
 
 ©IGI Publishers  2015. This chapter appears as O. Kocabas, T. Soyata, "Towards Privacy-Preserving Medical Cloud 
Computing Using Homomorphic Encryption". 

 
 
 

Towards Privacy-Preserving Medical 
Cloud Computing Using 

Homomorphic Encryption 
 

Övünç Kocabaş 
Dept. of Electrical and Computer Engineering, University of Rochester 
 
Tolga Soyata 
Dept. of Electrical and Computer Engineering, University of Rochester 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 

Personal health monitoring tools, such as commercially available wireless ECG patches, can 
significantly reduce healthcare costs by allowing patient monitoring outside the healthcare 
organizations. These tools transmit the acquired medical data into the cloud, which could provide an 
invaluable diagnosis tool for healthcare professionals. Despite the potential of such systems to 
revolutionize the medical field, the adoption of medical cloud computing in general has been slow due 
to the strict privacy regulations on patient health information. We present a novel medical cloud 
computing approach that eliminates privacy concerns associated with the cloud provider. Our 
approach capitalizes on Fully Homomorphic Encryption (FHE), which enables computations on 
private health information without actually observing the underlying data. For a feasibility study, we 
present a working implementation of a long-term cardiac health monitoring application using a well-
established open source FHE library.  
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INTRODUCTION 
 
The Patient Protection and Affordable Care Act (US Government Printing Office) is one of the most 
significant government efforts to generalize the use of electronic medical records (EMRs) and to 
incentivize the development of innovative technologies that can help curb rising US healthcare costs. 
Cloud computing is a viable option to reduce healthcare costs associated with EMRs by outsourcing 
the storage of medical data to cloud operators (Amazon Web Services; Google Cloud Platform; 
Microsoft Windows Azure), however, Personal Health Information (PHI) privacy is strictly mandated 
by the Health Insurance Portability and Accountability Act (HIPAA) (US Department of Health and 
Human Services, 2014) and the risks associated with a breach of PHI are steep (up to $1.5M 
depending on the type of violation). Signing a Business Associate Agreement (BAA) (US-HHS) 
authorizes cloud storage operators (e.g., (CareCloud, 2013) and (Dr Chrono, 2013)) to store PHI data. 
These offerings are all based on encrypted data storage, however, there is currently no service that 
offers secure long-term patient monitoring, which would imply computation on encrypted data. 

This chapter proposes a novel approach to eliminate privacy concerns. Our proposed Fully 
Homomorphic Encryption (FHE) based cloud computing solution allows the cloud to perform 
computations on encrypted data, without actually observing the data (i.e., patient private health 
information). While this method holds the promise to completely eliminate the cloud-based privacy 
concerns, it comes at a steep price: FHE-based operations are orders of magnitude slower than regular 
operations, rendering FHE impractical for generic applications (Bos, Lauter, & Naehrig, 2014; 
Naehrig, Lauter, & Vaikuntanathan, 2011; Kocabas, et al., 2013; Wang, Hu, Chen, Huang, & Sunar, 
2013; Dai, Doroz, & Sunar, 2014). In this chapter, one type of computation is shown to be a 
promising candidate for FHE-based medical applications: long-term patient monitoring.  

Contributions of this chapter are: 1) implementation of a well-known ECG algorithm 
(Couderc, et al., 2011) using an open source FHE library (Halevi & Shoup, 2014), 2) detailed 
description of the steps required for such an implementation, which are far from trivial, 3) 
presentation of a proof-of-concept study on a restricted set of computations for long-term patient 
health monitoring using real data: specifically, the computation of the average heart rate, minimum 
and maximum heart rate, and the detection of a cardiac hazard called the drug-induced long QT 
syndrome (LQTS) (Aktas, Shah, & Akiyama, 2007; Brenyo, Huang, & Aktas, 2011), 
4)  demonstration of the potential for FHE-based generalized secure medical cloud computing.  

Our claims are proven on test data taken from the University of Rochester THEW ECG 
database (Couderc J.-P. , 2010), and it is shown that such operations can be performed 
homomorphically, thereby guaranteeing information security. Given that cardiac diseases are the #1 
cause for deaths in the United States (Hoyert & Xu, 2012), our study is an important and novel step in 
the development of generalized secure medical cloud computing.  

This chapter is organized as follows: We provide background information on FHE, followed 
by a system- and application-level introduction to our proposed solution. A description of the nature 
of the acquired medical data and the operations performed on this data are described in the next 
section and a detailed FHE scheme used for our application development is presented. Our circuit-
based computational approach for this development and the details of our implementation are 
presented. The performance evaluation of our proposed solution details our findings. Conclusions and 
pointers to future research are provided.  
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Figure 1: Proposed Cloud-based secure long-term patient monitoring system. 
Adapted from (Page, Kocabas, Ames, Venkitasubramaniam, & Soyata, 2014). 

BACKGROUND 
Conventional encryption schemes such as AES (NIST-AES, 2001) do not provide a mechanism for 
computations on encrypted data. When data is encrypted using AES, the only permitted operation on 
it is decryption by using a secret key. This implies that AES provides a secure storage, but not a 
secure computation mechanism. Cryptographic strength of AES, combined with its ease of its 
implementation makes AES-based encrypted storage standards the heart of HIPAA-compliant storage 
(Scarfone, Souppaya, & Sexton, 2007), while no current mechanism exists for HIPAA-compliant 
computation. Without this missing component, a system that achieves security in medical data 
acquisition (Phase I) and storage (Phase II) is possible (Figure 1), but computation (Phase III) is not.  

Fully Homomorphic Encryption (FHE) schemes enable the computation of meaningful 
operations on encrypted data without observing the actual data. Figure 2 illustrates a conceptual 
example for adding A=23 and B=17 using FHE, where A, B are the FHE-encrypted ciphertexts of A 
and B that are sent to the cloud. Homomorphic Addition (denoted as +ℎ) is performed on A and B to 
yield the FHE-encrypted result C, which can be safely transmitted back out of the cloud, where it is 
decrypted to obtain the intended computation result C.  

 
Figure 2: A conceptual example for Fully Homomorphic Encryption. 

The idea of FHE was first proposed by Rivest et al. in 1978 (Rivest, Adleman, & Dertouzos, 
1978) and remained a puzzle to the researchers over the last three decades until Gentry (Gentry, 2009) 
proposed the first possible mechanism in 2009. Schemes proposed before (Goldwasser & Micali, 
1982; El Gamal, 1985; Cohen & Fischer, 1985; Paillier, 1999; Damgard & Jurik, 2001; Boneh, Goh, 
& Nissim, 2005) could only perform a limited set of operations (i.e., only addition or only 
multiplication).  

Gentry’s FHE scheme can perform arbitrary number of additions and multiplications, 
allowing a set of generic computations on FHE-encrypted data. Gentry’s scheme introduces random 
noise to ciphertexts during encryption. The amount of noise grows with each homomorphic operation 
and if it exceeds a threshold, decryption produces an incorrect message. Gentry’s novel proposal 
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(Gentry, 2009) uses a method called bootstrapping (also known as recryption) which resets the noise 
inside the ciphertexts. However, Gentry’s scheme has several inefficiencies related to storage and 
computation time, which has prevented it from becoming commonplace. Each ciphertext can only 
encrypt a one-bit message, and to increase the noise threshold, the size of ciphertexts must be large, 
which results in an expansion of storage space (e.g., the size of a ciphertext encrypting a one-bit 
message could be multi-million bits). Furthermore, homomorphic operations require a 
computationally intensive recryption operation to periodically reset the noise, making Gentry’s FHE 
scheme impractical (Gentry & Halevi, 2011).  

Following Gentry’s FHE scheme (Gentry, 2009), several FHE implementations have been 
proposed to date (Naehrig, Lauter, & Vaikuntanathan, 2011; Dijk, Gentry, Halevi, & Vaikuntanathan, 
2010; Brakerski & Vaikuntanathan, 2011; Brakerski & Vaikuntanathan, 2011; Coron, Mandal, 
Naccache, & Tibouchi, 2011; Gentry & Halevi, 2011; Smart & Vercauteren, 2010) (Stehle & 
Steinfeld, 2010; Brakerski, Gentry, & Vaikuntanathan, 2012; Gentry, Halevi, & Smart, 2012; Gentry, 
Halevi, & Smart, 2012). Yet a practical FHE scheme does not exist as of now and improving the 
performance of FHE remains very active research area (DARPA-PROCEED).  

 
SYSTEM AND APPLICATION MODELING 
Figure 2 illustrates our proposed system, which will enable long-term health monitoring of patients 
securely and automatically. Privacy of the health data is handled in three distinct phases (Kocabas, et 
al., 2013): Acquisition (Phase I), Storage (Phase II), and Computation (Phase III).  
 
ECG Acquisition Devices  
ECG recording technology has advanced to the point where there are personal ECG recording devices 
that allow patients to record ECG activity at home (e.g., the iPhone attachment from Alivecor 
(AliveCor, 2014), and the ECG patch from Clearbridge VitalSigns CardioLeaf (CardioLeaf, 2013)). 
Most of today’s acquisition devices provide accurate measurements, but do not support long-term 
trend analysis, which can play a significant role in disease prevention.  
  On the left of Figure 1, Phase I (acquisition) is assumed to be done with such devices, where 
the data is sampled and converted to digital format. Some computational pre-processing can be 
performed and the acquired (and partially pre-processed) data is transmitted to the cloud after being 
encrypted using FHE (Brakerski, Gentry, & Vaikuntanathan, 2012). This encryption step is 
computationally expensive and necessitates the existence of a nearby computationally capable device 
such as the patient’s smartphone or a cloudlet (Soyata, Ba, Heinzelman, Kwon, & Shi, 2013; Soyata, 
et al., 2012; Soyata, Muraleedharan, Funai, Kwon, & Heinzelman, 2012). The link between the 
acquisition device and the computationally capable device can be secured with conventional 
encryption schemes (NIST-AES, 2001; Rivest, Adleman, & Shamir, 1978).  

Storage and Computation of the Patient Data 
Two functions of the cloud are outlined in Figure 1: storage (Phase II) and computation (Phase III). 
Cloud-based monitoring results are transmitted to the doctor’s mobile device (on the right) in FHE-
encrypted format, where they are decrypted only while the doctor is reviewing the results. Keeping 
the data in encrypted format from its acquisition point (the ECG patch) to its end point (the doctor’s 
smartphone) enables long-term health monitoring options that didn’t exist with storage-only 
encryption, and will be the focus of this chapter.  

Notice that in Figure 1, we propose two alternate paths to transmit the data: Top and bottom 
paths are storage-only (AES-encrypted) and computation only (FHE-encrypted) data paths, 
respectively and are synchronized with time-stamp markers. The top path redundantly contains all of 
the information that the bottom part contains, with one significant distinction: The top (storage-only) 
version of the data is encrypted with a storage-neutral encryption such as AES (NIST-AES, 2001), 
whereas, the bottom path is encrypted with a computation-only encryption, such as FHE. While the 
AES version of the data is meant for long-term storage (e.g., 10 years, mandated by the law), the 
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bottom part is meant for short-term storage, only during the homomorphic computations. This 
separation is necessary due to the significant bloating of the data up to a million-fold (Wang, Hu, 
Chen, Huang, & Sunar, 2013; Halevi & Shoup, 2014; Brakerski, Gentry, & Vaikuntanathan, 2012) 
during homomorphic encryption. This redundancy allows the application to use the bottom path to 
calculate the time stamp markers for later retrieval from the permanent AES-based storage.  

 
Operations in the Target Medical Application 
 
We have chosen to detect long QT syndrome (LQTS) as our primary medical application because 
measuring cardiac safety remains one of the most challenging hurdles in the development of new 
drugs and biotechnological products. The propensity of the drugs to cause potentially fatal arrhythmia, 
called torsades des pointes (TdP), is a significant public health issue (Woosley, 2001). An estimated 
86% of all of the new drugs that are tested in pharmaceutical development show hERG inhibitory 
activity leading to TdP (Shah R. R., 2005). hERG is a gene that codes a protein subunit of potassium 
ion channels, and its contribution to the electrical activity of the heart is well known (Fink, Noble, 
Virag, Varro, & Giles, 2008). Many drugs potentially prolong the heart’s ventricular repolarization 
process (VR), which in some cases trigger TdP, degenerate into ventricular fibrillation, and can cause 
sudden cardiac death (SCD) (Shah R. , 2004).  

In addition to LQTS Detection, we will also incorporate functionality into our application to 
provide vital patient health statistics (Page, Kocabas, Soyata, Aktas, & Couderc, 2014). These are the 
average, minimum, and maximum heart rates. Although more sophisticated operations are feasible 
with FHE, we will restrict our focus on these fundamental operations, which form a base that allows 
the implementation of a more generalized set of operations.  

COMPUTATIONAL/FUNCTIONAL MODELING 
An observation of the applications mentioned in the previous section reveals distinct patterns for the 
incoming data and the type of functions applied to this data. In this section, we will describe a 
computational framework for the proposed system described in the previous section.  
 
Operations in the Target Medical Application 
 
The input to the LQTS detection is QT and RR intervals (see Figure 3), computed from raw ECG data 
by using a set of algorithms validated on a large cohort of subjects (Couderc, et al., 2011). The QT 
interval represents the ventricular recovery phase of the heart and its prolongation (i.e., long QT) is a 
marker for a potential Torsades des Pointes (a deadly cardiac hazard, abbreviated as TdP) (Aktas, 
Shah, & Akiyama, 2007; Brenyo, Huang, & Aktas, 2011; Couderc, et al., 2011; Couderc, et al., 2010; 
Zareba, et al., 1995). The RR interval is the time between QRS complexes, which is used for 
determining the heart rate.  



 
 ©IGI Publishers  2015. This chapter appears as O. Kocabas, T. Soyata, "Towards Privacy-Preserving Medical Cloud 
Computing Using Homomorphic Encryption". 

 
Figure 3: QT and RR intervals in ECG. (Image based on SinusRhythmLabels.png by 
Anthony Atkielski). 

QT prolongations are detected by first calculating the QTc (known as the corrected QT) as 𝑄𝑇𝑐 = 𝑄𝑇
√𝑅𝑅

 
from QT and RR intervals using the widely accepted Bazett’s formula (Bazzett, 1997). QTc values are 
compared to a clinical threshold (e.g., 500 ms) to detect LQTS as shown below 

 𝑄𝑇𝑐 =
𝑄𝑇
√𝑅𝑅

⟹  � 𝑁𝑜𝑟𝑚𝑎𝑙             𝑄𝑇𝑐 ≤ 500
 𝐿𝑄𝑇𝑆                   𝑄𝑇𝑐 > 500  

� (1) 

which outlines the criteria to distinguish between normal cardiac operation vs. a potential LQTS 
hazard. Our case study and preliminary results will be derived by computing Equation 1 on the ECG 
sample dataset obtained from the THEW repository (Couderc J.-P. , 2010).  

Modeling the Data Stream and Operations 
Input data stream 𝑑[𝑖]: This is the FHE-encrypted ECG data transmitted from patients’ home to the 
cloud. 
Computation functions 𝑓𝑐(. ): These are the functions that are applied to individual data elements 
𝑑[𝑖]. An example function representing the 𝑓𝑐(. ) family is 
 𝑓𝑐(𝑑[𝑖]) = (𝑑[𝑖] >  500)|𝑖=1…𝜓 (2) 

which produces 𝜓 individual Boolean results for each of the data elements, denoting whether each 
data element 𝑑[𝑖] is greater than 500 or not. Note that, this function can be used to detect LQTS as 
shown in Equation 1. 
Aggregation functions 𝑓𝑎(. ): These are the functions that aggregate the results obtained by 𝑓𝑐(. ) to 
provide a summarized result. Let 𝑑𝑐[𝑖] be the results calculated by the computation function 𝑓𝑐(. ). 
Then the aggregation result can be described as 
 𝑑𝑎[𝑗] =  𝑓𝑎(𝑑𝑐[𝑖])|𝑖=1…𝜓,   𝑗=1….Ω (3) 

where 𝑑𝑎[𝑗] are the Ω aggregated results from the 𝜓 element data stream 𝑑[𝑖]. Note the specific case 
Ω = 1, which denotes the single result obtained from an entire stream of incoming 𝜓 data elements. 

An example application of using data elements 𝑑[𝑖] and 𝑓𝑐(. ),𝑓𝑎(. ) functions is to detect LQTS within 
a time interval. More specifically, while 𝑑[𝑖] could denote ECG samples 10 ms apart, the aggregated 
result could be the detection of LQTS hazard within a 20 sec interval (i.e., 𝜓 = 2000, Ω = 1). In 
this specific example, 𝑓𝑐(. ) is chosen to be the comparison function shown in Equation 2 and 𝑓𝑎(. ) is 
chosen to be Logical OR function that aggregates Boolean results generated by the comparison 
function. 
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FHE COMPUTATIONAL STRUCTURE 
Our proposed system uses one of the most efficient FHE schemes, called the Brakerski-Gentry-
Vaikuntanathan (BGV) scheme (Brakerski, Gentry, & Vaikuntanathan, 2012) and its open-source 
implementation HElib (Halevi & Shoup, 2014). Core of the computations in our implementation 
resemble Equations 2 and 3 on the incoming FHE-encrypted data stream 𝑑[𝑖]. Since the operations 
available in the BGV scheme require an unconventional representation of this data stream 𝑑[𝑖] and the 
evaluation functions 𝑓𝑐(. ) and 𝑓𝑎(. ), a detailed presentation of the BGV scheme is provided in this 
section. 
 
Leveled FHE Scheme 
Following Gentry (Gentry, 2009), FHE schemes up to date (Dijk, Gentry, Halevi, & Vaikuntanathan, 
2010; Brakerski & Vaikuntanathan, 2011; Brakerski & Vaikuntanathan, 2011; Coron, Mandal, 
Naccache, & Tibouchi, 2011; Gentry & Halevi, 2011; Smart & Vercauteren, 2010; Stehle & Steinfeld, 
2010) rely on introducing a small noise into a ciphertext during encryption. This noise grows with 
each operation and can cause decryption errors if it is allowed to exceed a certain threshold. This 
requires performing the computationally expensive recrypt operation to reset the noise after every 
homomorphic multiplication, which would otherwise increase the noise exponentially. 
 BGV introduces a leveled FHE scheme that avoids the expensive recrypt operation. The leveled 
FHE scheme uses a better noise management technique called modulus-switching (Brakerski & 
Vaikuntanathan, 2011), which allows performing cascaded homomorphic multiplications ( ×ℎ ) 
without causing decryption errors. A parameter L (the Level) is introduced, which must be determined 
before starting any computation. The level L is predominantly determined by the depth of the 
×ℎoperations for the function to be evaluated and for the rest of the chapter we will use multiplicative 
depth and level L interchangeably. Right after encryption, each ciphertext is set to a level L and L is 
reduced by one after each ×ℎ until L=1, at which point further ×ℎ operations can cause decryption 
errors. 

Leveled FHE improves traditional FHE performance, but introduces an implementation burden: L 
must be determined a priori (before performing any homomorphic operation). During the 
implementation of our medical application, we will calculate the multiplicative depth of each 
computation and set the level L accordingly. For the rest of this chapter, we will use the lower case 
𝑥7 ⋯𝑥0  notation to denote the plaintext slots, and the upper case bold notation X to denote the 
ciphertext, i.e., the encrypted version of plaintext 𝑋 = (𝑥7⋯𝑥0) . Therefore, 𝑿 = 𝐸𝑛𝑐(𝑋) =
 𝐸𝑛𝑐(𝑥7 ⋯𝑥0)), where 𝐸𝑛𝑐() is the homomorphic encryption operation. 
 
Plaintext Space 
In the BGV scheme, plaintexts are represented as polynomial rings in the 𝐺𝐹(𝑝𝑑) where 𝑝 is a prime 
number that defines the range of polynomial coefficients and 𝑑 is the degree of the polynomials. 
Homomorphic addition and multiplication of ciphertexts correspond to addition and multiplication of 
plaintexts in the specified polynomial ring, respectively. We choose the polynomial ring in 𝐺𝐹(2) 
(i.e., 𝑝 = 2, 𝑑 = 1), where homomorphic addition and multiplication of ciphertexts translate to XOR 
and AND operations on the plaintexts, respectively. This “functionally complete” set (i.e., XOR and 
AND) will allow the fundamental operations of our medical application to be represented as a binary 
circuit using a combination of XOR and AND gates in the following sections. 
 
Message Packing  
Representing plaintexts as polynomial rings in 𝐺𝐹(𝑝𝑑) allows the “packing” of multiple messages 
into a plaintext by partitioning it into independent “slots” (Smart & Vercauteren, 2014), thereby 
permitting the execution of the same homomorphic operation on multiple slots in a Single Instruction 
Multiple Data (SIMD) fashion. Figure 4 exemplifies a ciphertext 𝑿, encrypting a plaintext that packs 
two 4-bit messages (X[0] and X[1]), into 8 plaintext slots. 
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Figure 4: Two 4-bit messages (X[0], X[1]) packed into 8 plaintext slots 

 
Equation 4 (left) and Table 1 exemplify the relationship among relevant BGV parameters for message 
packing. In our implementation, which uses 87,896 ECG samples (i.e., “messages,” nMsgs=87, 896) 
packed into plaintexts, containing 682 slots each (nSlots=682). From Equation 4 (right), 2093 
ciphertexts are needed to store these 16-bit ECG samples (i.e., 𝑘 = 16, 𝑁 = 2093). 
 
 

𝑁 = �
𝑛𝑀𝑠𝑔𝑠

�𝑛𝑆𝑙𝑜𝑡𝑠
𝑘

�
� ⟹ �

87896

�682
16
�
� ⟹ 𝑁 = 2093 (4) 

 
Table 1: Relevant BGV parameters 

Term BGV Definition Usage in Application 
nSlots Number of slots in plaintext - 
nMsgs Number of messages Number of ECG samples 
K Bit-length of a message ECG sample bit-length 
N Number of ciphertexts To store all samples 
 
Primitive Operations in BGV 
Packing allows 𝑛𝑆𝑙𝑜𝑡𝑠 parallel operations on plaintext slots, but with restricted applicability, as will 
be detailed in the next section. From a set of existing operations in BGV, we use an orthogonal set of 
four as shown in Figure 5. Note that, the data contained in a ciphertext (e.g., ciphertext 𝑨 in Figure 
5a) does not necessarily have a one-on-one correspondence with the data contained in the unencrypted 
plaintext slots (1010 0101). 
Homomorphic Addition ( +ℎ ): of two ciphertexts corresponds to a slot-wise XOR of the 
corresponding plaintext in 𝐺𝐹(2), as shown in Figure 5a. +ℎ does not affect the level 𝐿 of the BGV 
scheme. 
Homomorphic Multiplication (×ℎ): of two ciphertexts corresponds to a slot-wise AND operation of 
the corresponding plaintexts, as shown in Figure 5b. ×ℎ  operation adds one to the level 𝐿  of the 
ciphertext. Therefore, the depth of multiplications will determine the required level of the BGV 
scheme. 
Rotate (>>>ℎ, <<<ℎ): provides rotation of slots similar to a barrel shifter as shown in Figure 5c. 
Slots will wrap around based on the rotation direction, thereby potentially garbling the data contained 
in neighboring slots. This will be corrected using Select operations. 
Select (𝑠𝑒𝑙𝑚𝑎𝑠𝑘): chooses between the slots of two plaintexts based on the selection mask as shown in 
Figure 5d, through an unencrypted binary vector. We will use Select to mask out the bits that are 
diffused from other messages after a Rotate. 
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Figure 5: Computational Primitives in BGV 

 
Performance Analysis 
Leveled FHE implies an untraditional trade-off scheme: choosing 𝐿 too high slows down the entire 
chain of homomorphic operations, while small 𝐿  values prohibit evaluating elaborate functions. 
Figure 6 shows impact of level 𝐿 on ciphertext and public key sizes, which grow substantially with 
the increased 𝐿, even to represent the same data. For example, one bit of plaintext might correspond to 
a 100KB of storage at 𝐿 = 10, but it might grow to 1MB when the level is 𝐿 = 20, requiring 10x 
more storage space to perform 20 cascaded homomorphic multiplications instead of 10. 
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Figure 6: Public Key and Ciphertext Sizes for different BGV level. 

Figure 7 shows a second disadvantage of increased 𝐿: Homomorphic operations execute slower with 
increased 𝐿. For example, while a ×ℎ operation might take one second at 𝐿 = 20, it takes 10 seconds 
at 𝐿 = 40. Figure 7 presents the performance of individual FHE operations. While addition operation 
is almost free, rotation and multiplication operations are expensive and will dominate the execution 
time. This emphasizes the importance of 𝐿  in formulating our application. When designing our 
medical application, optimizing the chain of computations to reduce 𝐿, multiplications, and rotations 
will be our priority. 
 

 
Figure 7: Level-dependent execution times of BGV primitives. 

 
FHE IMPLEMENTATION STEPS 
To utilize the properties of BGV efficiently, the entire cloud application must be centered around the 
computational roadmap shown in Figure 8. The top of this figure (i.e., the data transformation path) 
shows the transformations that the incoming data stream 𝑑[𝑖] must go through to produce a properly-
formatted ciphertext. This top part is assumed to be performed during data acquisition by a 
computationally capable device, such as the patient’s smartphone or a cloudlet (Wang, Liu, & Soyata, 
2014; Powers, Alling, Gyampoh-Vidogah, & Soyata, 2014) (see Figure 1). The bottom of Figure 8 
(i.e., the functional transformation path) will be the focus of this section, which details the steps that 
must be taken to convert the computation (𝑓𝑐(. )) and aggregation (𝑓𝑎(. ))) functions into BGV 
primitives. These steps include Function-to-Circuit mapping, Circuit-to-SIMD mapping, and 
Execution using BGV primitives. 
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Figure 8: Roadmap for secure cloud computing FHE 

 
Conversion from Function to Circuit 
The first step in functional transformation is the conversion of a function 𝑓(. ) into a binary circuit. 
Without loss of generality, this step can be demonstrated on a 4-bit greater-than (𝑋 > 𝑌) comparator 
for two numbers 𝑋 and 𝑌 circuit as follows: 
 

𝑋 > 𝑌 = (𝑥3𝑦�3 ⨁ 𝑥2𝑦�2𝑒3 ⨁ 𝑥1𝑦�1𝑒3𝑒2 ⨁ 𝑥0𝑦�0𝑒3𝑒2𝑒1) (5) 
 
where 𝑥𝑖  is the value of bit 𝑖 of 𝑋,  𝑦�𝑖  is the inverse of bit 𝑖  of 𝑌, and 𝑒𝑖  is their bitwise equality 
(𝑥𝑖 == 𝑦𝑖). 

 
Figure 9: Depth-3 Comparison Circuit for implementing 
𝑋 > 𝑌 = (𝑥3𝑦�3 ⨁ 𝑥2𝑦�2𝑒3 ⨁ 𝑥1𝑦�1𝑒3𝑒2 ⨁ 𝑥0𝑦�0𝑒3𝑒2𝑒1) 

 
The minimum multiplication depth of a 4-bit comparator circuit is 3 as shown in Figure 9. Each 
multiplication depth is represented by different shades of gray. Note that, the comparator circuit 
contains only XOR and AND gates, corresponding to homomorphic addition (+ℎ) and multiplication 
(×ℎ) in 𝐺𝐹(2), respectively. For clarity we depict inverters, which can be implemented by XORs. 
 
Circuit to SIMD Mapping 
This step is necessary to execute homomorphic operations in a SIMD fashion. To gain insight into this 
concept, remember from the previous sections that each ciphertext encrypts a plaintext that maps the 
bits of a message into plaintext slots in 𝐺𝐹(2). Let 𝑿 and 𝒀 be such ciphertexts that encrypt plaintexts 
packing 𝑘-bit messages 𝑋 and 𝑌. Further, assume that bit 𝑖 of message 𝑋 is mapped to plaintext slot 
index 𝑖 (e.g., 𝑥0  is mapped to slot 0) and the plaintext is represented as (𝑥𝑘−1𝑥𝑘−2 ⋯𝑥1𝑥0). The 
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homomorphic addition operation 𝑿 +ℎ 𝒀 adds (i.e., XOR’s) each plaintext bit having the same slot 
index. To state alternatively, a single +ℎ  operation on the ciphertext performs bitwise-XOR 
operations on 𝑛𝑆𝑙𝑜𝑡𝑠 plaintext slots in parallel. This has a drawback: No operation can be performed 
on messages with a different slot index, unless proper rotation and selection operations are performed, 
as detailed previously. 

To exemplify these trade-offs, let us focus on the slot index assignments of messages in 
Equation 5. Computing terms like 𝑥3𝑦�3, 𝑥2𝑦�2, 𝑥1𝑦�1, 𝑥0𝑦�0  is equal to performing a single ×ℎ 
operation on ciphertexts as 𝑿 ×ℎ  𝒀 ⟺ (𝑥3 𝑥2 𝑥1 𝑥0)  ∧  (𝑦3 𝑦2 𝑦1 𝑦0) , where ⟺  denotes the 
relationship between the ciphertext and plaintext, and ∧ is slotwise AND. Alternatively, computing 
terms like 𝑥2𝑦�2𝑒3 poses a problem since 𝑒3 is in a different slot index than 𝑥2 and 𝑦�2. This means 
that we need to rotate 𝑬 right to align it with 𝑿 ×ℎ  𝒀. After rotating 𝑬, a selection operation is 
needed to mask out the bits diffusing from neighboring plaintext slots. 
 
Table 2: Sequence of FHE operations for 4-bit comparison. 𝑿, 𝒀 are 4-bit messages, 
𝒙𝒊, 𝒚𝒊’s are the bits of the messages at index 𝒊. 

Step BGV Operation on  
Ctxt 

 Plaintext Slots  Level of 
Ctxt 

  slot 3 slot 2 slot 1 slot 0  
1 𝑬 = 𝑿 𝑥3 𝑥2 𝑥1 𝑥0 𝐿 
2 𝑬 = 𝑿 +ℎ 𝒀  𝑥3⨁𝑦3 𝑥2⨁𝑦2 𝑥1⨁𝑦1 𝑥0⨁𝑦0 𝐿 
3 𝑬 = 𝑿 +ℎ 𝟏 𝑒3

⇐ 𝑥3⨁𝑦3��������� 
𝑒2
⇐ 𝑥2⨁𝑦2��������� 

𝑒1
⇐ 𝑥1⨁𝑦1��������� 

𝑒0
⇐ 𝑥0⨁𝑦0 

𝐿 

4 𝑨 = 𝑬 >>>ℎ  𝟏 ? 𝑒3 𝑒2 𝑒1 𝐿 
5 𝑨 = 𝑬 𝑠𝑒𝑙0111 𝟏 1 𝑒3 𝑒2 𝑒1 𝐿 
6 𝑩 = 𝑬 >>>ℎ  𝟐 ? ? 𝑒3 𝑒2 𝐿 
7 𝑩 = 𝑩 𝑠𝑒𝑙0011 𝟏 1 1 𝑒3 𝑒2 𝐿 
8 𝑪 = 𝑬 >>>ℎ  𝟑 ? ? ? 𝑒3 𝐿 
9 𝑪 = 𝑩 𝑠𝑒𝑙0001 𝟏 1 1 1 ? 𝐿 
10 𝑨 = 𝑨 ×ℎ  𝑩 1 𝑒3 𝑒3𝑒2 𝑒2𝑒1 𝐿 − 1 
11 𝑴 = 𝑨 ×ℎ  𝑪 1 𝑒3 𝑒3𝑒2 𝑒3𝑒2𝑒1 𝐿 − 2 
12 𝑸 = 𝒀 𝑦3 𝑦2 𝑦1 𝑦0 𝐿 
13 𝑸 = 𝑸 +ℎ  𝟏 𝑦3��� 𝑦2��� 𝑦1��� 𝑦0��� 𝐿 
14 𝑸 = 𝑸 ×ℎ  𝑿 𝑥3𝑦3��� 𝑥2𝑦2��� 𝑥1𝑦1��� 𝑥0𝑦0��� 𝐿 − 1 
15 𝑴 = 𝑴 ×ℎ  𝑸 𝑥3𝑦3��� 𝑥2𝑦2���𝑒3 𝑥1𝑦1���𝑒3𝑒2 𝑥0𝑦0���𝑒3𝑒2𝑒1 𝐿 − 3 
 
 
Conversion from SIMD to FHE Primitives 
To evaluate the circuit in Equation 5 using BGV primitives, we decouple the computation into two 
separate homomorphic multiplications (×ℎ) as follows: 
 

𝑿 >ℎ  𝒀 = (𝑿 ×ℎ 𝒀) ���� ×ℎ  𝑴⟺
�(𝑥3 𝑥2 𝑥1 𝑥0) ∧ (𝑦3��� 𝑦2��� 𝑦1��� 𝑦0���)� ∧ (1 𝑒3 𝑒3𝑒2 𝑒3𝑒2𝑒1 )

 (6) 

  
𝑴 and 𝑬 ciphertexts are the encrypted versions of (1  𝑒3  𝑒3𝑒2  𝑒3𝑒2𝑒1 ) and (𝑒3  𝑒2  𝑒1  𝑒0). Table 2 
lists the steps for evaluating Equation 6 using BGV primitives, by detailing the intermediate 
ciphertext levels 𝐿 and the status of the encrypted plaintext slots. First, we compute 𝑬 in Steps 1-3, 
which requires an XNOR operation to check if the bits of 𝑋 and 𝑌 are equal as follows: 
 

𝑒𝑖 = 𝑋𝑁𝑂𝑅(𝑥𝑖,𝑦𝑖) = 𝑥𝚤⨁𝑦𝚤�������� = 𝑥𝑖⨁𝑦𝑖⨁1 (7) 
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Naive Computation of 𝑴 : Calculating 𝑴  from 𝑬  requires storing rotated versions of 𝑬  within 
temporary ciphertexts 𝑨,𝑩,𝑪  which store encrypted values of ( 1  𝑒3  𝑒2  𝑒1 ), ( 1 1 𝑒3  𝑒2 ) and 
(1 1 1 𝑒3) in Steps 4-9. Rotation diffuses unwanted bits into 𝑬 (represented as “?”), which must be 
replaced with “1”s via a proper selection mask. 𝑴 (encrypted (1  𝑒3  𝑒3𝑒2  𝑒3𝑒2𝑒1)) is computed by 
multiplying these temporary ciphertexts as 𝑴 = 𝑨 ×ℎ  𝑩 ×ℎ  𝑪 in Steps 10-11. Note that level 𝐿 of 
the ciphertexts is reduced by one after each ×ℎ (as described previously). In general, computing 𝑴 for 
𝑘-bit messages requires first generating 𝑘 − 1 rotated versions of 𝑬 and then multiplying them by a 
log2 𝑘 depth binary-tree circuit. 

Running Products Method: The naive method for computing 𝑴 requires 𝑂(𝑘) of the expensive  ×ℎ 
and >>>ℎ operations which dominate the run-time of >ℎ . A close observation of 𝑴 reveals that 
plaintext slots store running products of the 𝑒𝑖 bits. Therefore, calculation of 𝑴 can be optimized by 
computing the running products, as pseudo-coded below: 

 
1: 𝑴 ← 𝑴  >>>ℎ  𝟏  
2: 𝑴 ← 𝑴  𝑠𝑒𝑙𝑚𝑎𝑠𝑘 𝟏, 𝑖 ← 1  
3: 𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑘 𝐝𝐨 
4:  𝑻 ← 𝑴 
5:  𝑻 ← 𝑻  >>>ℎ  𝑖 
6:  𝑻 ← 𝑻  𝑠𝑒𝑙𝑚𝑎𝑠𝑘 𝟏 
7:  𝑴 ← 𝑴 ×ℎ  𝑻 
8: 𝑖 ← 𝑖 · 2 
9: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
 
With the optimization, number of ×ℎ  and >>>ℎ  operations are reduced to 𝑂(log2 𝑘), allowing a 
reduced multiplication depth of log2 𝑘. This results in a speedup of ≈ 𝑂(𝑘)

𝑂(log2 𝑘)
  compared to the naive 

method. We will 𝑂(log2 𝑘) provide detailed results on this later. 
 Once 𝑴 is computed, the final result of >ℎ is determined by first computing 𝒀 in Steps 12-13 
and then calculating (𝑿 ×ℎ  𝒀� ×ℎ  𝑴) in Steps 14-15. Note that the resulting ciphertext is at level 
𝐿 − 3  indicating the cost of >ℎ  as 3 levels, which is same as the multiplicative depth of the 
comparison circuit in Figure 9. In general, comparison of 𝑘-bit messages requires log2 𝑘 + 1 levels 
(log2 𝑘 levels for computing 𝑴 and 1 level for ×ℎ at the end). Figure 10 shows >ℎ applied to two 4-
bit messages, with a TRUE or FALSE result. 
 

 
Figure 10: The result of the comparison in Equation 5 is a 𝒌-bit integer denoting 
ZERO (FALSE) or non-zero (TRUE). 

Conversion from SIMD to FHE Primitives 
The previous section detailed the implementation of homomorphic comparison (>ℎ), which detects 
LQTS based on Equation 2. The result of this comparison is TRUE or FALSE (i.e., LQTS Detected / 
Not Detected) in the format shown in Figure 10. To detect LQTS in any sample within a given 
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interval, a Logical OR aggregation must be performed over multiple comparison results as shown in 
Equation 3. Logical OR function can be expressed as a depth-1 circuit using XOR, AND gates as 
𝑂𝑅(𝑥𝑖, 𝑦𝑖) =  𝑥𝑖 ⨁𝑦𝑖 ⨁𝑥𝑖𝑦𝑖. The aggregated result will a have similar format shown in Figure 10, in 
which even a single “1” in any slot means LQTS Detected.  

 The order of applying 𝑓𝑎(. ) affects the depth of the circuit required for aggregation. Since our 
aggregations are associative, they can be performed in two ways (Savage, 1997): sequential (Figure 
11a) or as a binary tree (Figure 11b). While both methods require applying the same number of 
𝑓𝑎(. )’s for aggregation, binary tree method results in a smaller depth circuit. Specifically, if 𝑓𝑎(. ) has 
a multiplicative depth 𝑑 , then aggregating 𝑁  results requires 𝑂(𝑁.𝑑) -depth using the sequential 
method, while 𝑂(⌈log2 𝑁⌉.𝑑) -depth is sufficient for the binary tree method. Therefore, we will 
implement aggregation by applying 𝑓𝑎(. ) using the binary tree method, which reduces the required 
level 𝐿 for BGV.  
 
 

 
Figure 11: Aggregation Types: a) Sequential, b)Binary Tree 

 

 
IMPLEMENTING MEDICAL APPLICATIONS 
In this section, we provide details on the FHE-based implementation of medical applications using the 
computational structure and the implementation steps described in the previous sections. Performance 
of FHE-based applications depend on two factors: 1) the level 𝐿 of the FHE scheme, and 2) the 
number of compute-intensive multiplication and rotation operations. We propose several 
optimizations to reduce both the level 𝐿 and the number of expensive FHE operations. We calculate 
the required level 𝐿 for each application that operates on 𝑁 ciphertexts encrypting a vector of 𝑘-bit 
ECG data. Without loss of generality, we specifically focus on three fundamental operations: 1) 
average heart rate, 2) LQTS detection, and 3) minimum and maximum heart rate calculation. These 
operations will form a fundamental basis for allowing more sophisticated medical applications.  
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Conversion from SIMD to FHE Primitives 
Finding the average heart rate involves accumulating encrypted values in N ciphertexts. For an 
efficient implementation of FHE-based accumulation, we use conventional VLSI design techniques 
similar to Wallace (Wallace, 1964) and Dadda (Dadda, 1965) multipliers that perform high-speed 
multi-operand additions by reducing both the depth and the number of carry operations. This design 
approach benefits our FHE-based accumulation in two ways: 1) reducing the number of carry 
operations avoids compute-intensive ×ℎ  operations, and 2) reducing the depth of computations 
translates to a reduced 𝐿 in FHE.  

We implement multi-operand additions by using a tree of Carry Save Adders (CSA), which 
reduces 𝑁 operands down to 2. Remaining operands are added using a fast parallel-prefix adder with a 
low-depth carry calculation/propagation to compute the final sum. Both CSA and parallel-prefix 
adders are amenable to SIMD, which perfectly fits the FHE implementation that we described in the 
previous section. We will now analyze the implementation details of both CSA and parallel-prefix 
adders:  

Carry Save Adder (CSA): compresses 3 𝑘-bit inputs (𝑋,𝑌,𝑍) to 2 outputs (𝑆: sum, 𝐶: carry) 
as follows:  

 
𝑆 = 𝑋 ⨁  𝑌⨁𝑍

𝐶 = (𝑋𝑌 ⋁  𝑋𝑍  ⋁  𝑋𝑍) << 1
 (8) 

where ⨁ and ⋁ are SIMD operations performed on all 𝑘 bits of the input in parallel. Multiplication 
depth of the CSA adder is determined by the computation of C, which requires a depth-3 circuit (1 for 
multiplications and 2 for combining the results of multiplications via ⋁).  

 

 
Figure 12: 8:2 compression of the operands using tree of CSAs. 

To reduce 𝑁 𝑘-bit operands, multiple stages of CSAs can be arranged as a tree by connecting 
𝑆 and 𝐶 as inputs to other CSAs. Figure 12 exemplifies the reduction of 8 operands down to 2 by 
using four levels of CSAs. The number of CSA stages (𝑛𝐶𝑆𝐴𝑆𝑡𝑎𝑔𝑒𝑠) for reducing 𝑁 operands is 
lower-bounded by Equation 9 (Savage, 1997) as shown below. The overall multiplication depth 
required by the CSA compression is equal to 𝑛𝐶𝑆𝐴𝑆𝑡𝑎𝑔𝑒𝑠 ×  3  

�
log2(𝑁 2⁄ )
log2(3 2⁄ )� + 1 ≤ 𝑛𝐶𝑆𝐴𝑆𝑡𝑎𝑔𝑒𝑠 (9) 

Further optimizations to CSA: The depth of CSA depends on computing 𝐶 which requires 
OR operations over products of inputs. We show in Table 3 that OR operations can be replaced with 
XORs for computing 𝐶, yielding an equivalent result. This wouldn’t be a meaningful substitution in a 
VLSI implementation, since XOR gates typically have a higher delay than OR gates (NCSU, 2014). 
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However, it reduces the depth of CSA from 3 to 1, which results in a ≈ 3 ×  performance 
improvement in an FHE implementation. With this optimization, CSA compression requires only 
𝑛𝐶𝑆𝐴𝑆𝑡𝑎𝑔𝑒𝑠 depth.  

 
Table 3: Replacing OR with XOR in CSA. 

𝑋 𝑌 𝑍 𝑋𝑌 𝑋𝑍 𝑌𝑍 𝑋𝑌 ⊥ 𝑋𝑌
⊥ 𝑋𝑌 

 

      ⊥= ⋁ ⊥= ⨁ 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 1 0 0 1 1 1 

1 0 0 0 0 0 0 0 

1 0 1 0 1 0 1 1 

1 1 0 1 0 0 1 1 

1 1 1 1 1 1 1 1 

 

Parallel-Prefix Adder: We use the Kogge-Stone adder (Kogge & Stone, 1973) as our 
parallel-prefix adder, which has a minimum possible multiplication depth, and its implementation is 
amenable to SIMD as exemplified in Figure 13.  

 
Figure 13: Kogge-Stone Parallel Prefix Adder 

 

To add two 𝑘-bit numbers, Kogge-Stone adder first computes the initial Generate (𝐺) and 
Propagate (𝑃), which require a single multiplication depth to compute 𝐺 =  𝑋𝑌. Then 𝐺 and 𝑃 are 
updated in log2 𝑘  stages, where each stage requires a depth-2 multiplication for updating 𝐺  as 
𝐺 =  𝐺′′ ∨  𝐺′𝑃′ . The final sum (𝑆 ) is computed as 𝑆 =  𝑃 ⊕  (𝐺 <<  1) . Therefore, overall 
multiplication depth of the Kogge-Stone adder is equal to 2log2 𝑘 + 1.  

To compute average heart rate of 𝑁 ciphertexts encrypting 𝑘-bit messages, first we use tree of 
CSA adders to compress 𝑁  ciphertexts down to 2 ciphertexts. Then, we add the remaining 2 
ciphertexts using a Kogge-Stone adder. We showed that the multiplication depths for tree of CSA and 
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Kogge-Stone adder are �log2(𝑁 2⁄ )
log2(3 2⁄ )� + 1 and 2log2 𝑘 + 1 , respectively. Therefore, to compute the 

average heart rate, the initial level 𝐿 of BGV should be chosen as 𝐿 > ��log2(𝑁 2⁄ )
log2(3 2⁄ )��+ (2log2 𝑘 + 1). 

 

 
LQTS Detection 
LQTS detection requires evaluating Bazett’s formula (Bazzett, 1997) homomorphically as described 
previously. To avoid the expensive square root and division operations, we re-formulate Equation 1 as 
follows:  

 
𝑄𝑇
√𝑅𝑅

> 500 𝑚𝑠 ⟹𝑄𝑇2 > 𝑅𝑅 × 250,000
⟹  𝑄𝑇𝐻 >  𝑅𝑅𝐻

 (10) 

 

where 𝑄𝑇𝐻 = 𝑄𝑇2 and  𝑅𝑅𝐻 = 𝑅𝑅 × 250,000 are pre-computed using front-end devices (left side of 
Figure 1), which transmit the FHE-encrypted versions of 𝑄𝑇𝐻  and 𝑅𝑅𝐻  into the cloud for LQTS 
detection. The cloud can perform LQTS detection as outlined in the previous section, by aggregating 
the result of the individual comparisons using OR operations, as detailed before. To check if an LQTS 
occurred within a given interval, the back-end device requests the result from the cloud and decrypts it 
(right side of Figure 1). The back-end device only needs to check presence of a “1” in the decrypted 
plaintext. If even a single “1” is present, this indicates that during that interval, 𝑄𝑇𝐻 was greater than 
𝑅𝑅𝐻 at least once, i.e., LQTS condition detected. 

The required depth for LQTS detection is the comparison depth plus the OR-reduction depth, which 
were shown to have individual depths (log2 𝑘 + 1) and log2 𝑁, respectively in the previous section. 
Therefore, the initial FHE level 𝐿 > (log2 𝑘 + 1 + log2 𝑁) must be chosen. Figure 14 shows speed-
ups obtained with the optimized method for different BGV levels. The parameters are same as that are 
used in evaluation later in the next section. For each level 𝐿, ciphertexts pack 16-bit messages and we 
observe an average speed-up of ≈  3 × which close to the best-case theoretical improvement ratio of 
≈ 𝑂(𝑘)

𝑂(log2 𝑘)
  .  

 

 
Figure 14: Normalized run-times (sec) for  >𝒉 using naive(left bars) and running-

products (right bars) method for 𝒌=16 (16-bit messages). 

 
Minimum & Maximum Heart Rate  
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Minimum and Maximum Heart Rate computations are based on selecting between the same indexed 
messages packed inside two ciphertexts. Figure 15 presents an example of max 𝑓𝑐(. ) function applied 
to two ciphertexts packing two 4-bit messages.  

 

 
Figure 15: Maximum Computation 

We model max 𝑓𝑐(. ) as a multiplexer circuit as follows:  

𝑹 = (𝑿 ×ℎ  𝑺) +ℎ  (𝒀 ×ℎ  𝑺)��� (11) 
 

where 𝑺 acts as the selector of the multiplexer. We use the result of >ℎ to compute 𝑺 as demonstrated 
in Figure 16.  

 

 

Figure 16: Generating selector of the multiplexer from comparison. 

Naive Computation of 𝑺: In the previous section, we showed that comparing two 𝑘-bit numbers will 
produce a 𝑘-bit result. If the first number is greater, result will have a single “1” and (𝑘 − 1) “0”s. 
Otherwise the result will contain 𝑘 “0”s. Generating 𝑺 requires diffusing the single “1” of the greater 
than case to all plaintext slots for the corresponding message. We use a combination of rotate and 
select operations to route the “1” and add the rotated result to generate 𝑘  “1”s. Pseudo-code for 
generating 𝑺 from the comparison result is shown in Figure 17 (left).  
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Figure 17: Pseudo-code for computing S using Naive(left) and Total Sums(right) 
methods 

 

Total Sums Method: Computing 𝑺  with the naive method requires 2𝑘  rotations, selections and 
additions. Since we would like to perform a sum operation (+ℎ) on each slot entry, we can use the 
Total Sums Algorithm for vector summation to reduce the number of required rotations to 2 log2 𝑘 as 
shown in Figure 17(right). Speed-ups obtained with this optimized method are plotted in Figure 18. 
Average speed-up is ≈  3.37 ×, which is close to the theoretical best-case speed-up of ≈ 𝑂(𝑘)

𝑂(log2 𝑘)
 

compared to the naive method.  

Generating 𝑺  does not involve multiplication. Therefore, the required level is log2 𝑘 + 1 
(same as >ℎ ). Once 𝑺  is computed, Minimum, Maximum operations require multiplications in 
Equation 11, which adds one more level, totaling log2 𝑘 + 2. The Minimum operation requires an 
additional step: inverting S, which can be formulated as 𝑺 = 𝑺 +ℎ 𝟏. Using 𝑺 (i.e., inverted 𝑺) as the 
selector in Equation 11 will yield the intended Minimum result.  

To find the minimum and maximum of 𝑁 ciphertexts encrypting a vector of 𝑘-bit messages, 
we keep applying min and max 𝑓𝑐(. ) in log2 𝑁 stage binary tree shown in Figure 11b which has a 
multiplication depth of (log2 𝑘 + 2) × log2 𝑁. Therefore, the initial level 𝐿 of BGV should be chosen 
as 𝐿 > (log2 𝑘 + 2) × log2 𝑁.  
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Figure 18: Normalized run-times (sec) for Maximum using naive(left bars) and Total-
Sums (right bars) methods for k=16 (16-bit messages). 

PERFORMANCE EVALUATION 
In this section, we will provide the implementation results of the three fundamental operations 
described in the previous section: 1) average heart rate, 2) LQTS detection, and 3) 
minimum/maximum heart rate computation.  
 
Experimental Setup 
In the previous section, we analyzed the required minimum BGV level (𝐿) for these three fundamental 
operations, and showed that 𝐿  depends on two parameters: bit-length of each message inside the 
plaintext (𝑘) and the total number of ciphertexts (𝑁). Table 4 summarizes the minimum required BGV 
level 𝐿 for each operation for a given pair of 𝑘 and 𝑁 values. While 16-bit messages (𝑘 = 16) were 
used for the LQTS detection and the min/max heart rate computations, 32-bit messages (𝑘 =  32) 
were used for the average heart rate computation to provide sufficient space for up to 216 
accumulations of 16-bit individual values before an overflow occurs (Kocabas & Soyata, 2014).  

 
Table 4: BGV Level required for each operation. 

Operation Type Required BGV Level 𝐿 

Average HR 
��

log2(𝑁 2⁄ )
log2(3 2⁄ )� + 1�+ (2 log2 𝑘 + 1) 

LQTS log2 𝑘 + 1 + ⌈log2 𝑁⌉ 

Min, Max HR (log2 𝑘 + 2) ×  ⌈log2 𝑁⌉ 

 

To simulate the acquired ECG samples (Phase I in Figure 1), we used THEW ECG database 
(Couderc J.-P. , 2010), which contains raw ECG data captured from a patient via a 12-lead Holter 
monitor at a 1000 Hz sampling rate. A 24-hour time period is processed to extract the heart beat 
information (i.e., the RR interval in Figure 3) in an ISHNE format annotation file (Badilini, 1998) and 
can be readily used to simulate our Phase I, where our acquisition devices capture raw ECG data and 
then pre-process them to extract RR and QT intervals before sending them to cloud in FHE-encrypted 
format. We encrypted the 87,896 values in this annotation file using FHE, each of which is the 
temporal distance between two heart beats in number-of-samples acquired from Holter monitor during 
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the RR interval (termed toc). Each toc value is encoded as a 𝑘-bit message (i.e., 𝑛𝑀𝑠𝑔𝑠 = 87896 and 
𝑘 = 16). We perform operations over encrypted toc values, so our results will be in terms of toc, 
which can be trivially converted to “time” values by multiplying them with the sampling rate (1000 
Hz) at the doctor’s phone/tablet after decrypting the final result.  
 
Implementation 
 
For implementation, we used the HElib library (Halevi & Shoup, 2014). We ran our simulations on a 
workstation within the University of Rochester Bluehive cluster (University of Rochester, CIRC), 
which includes two Intel Xeon E5-2695 Processors and 252GB RAM. Since the HElib library is not 
thread-safe, we report only single-thread run-time results. We set the parameters of the BGV scheme 
based on the analysis provided in (Gentry, Halevi, & Smart, 2012). For the fastest execution time, we 
set the level 𝐿  of the BGV scheme to the lowest possible value that allows the execution of all 
homomorphic operations without exceeding the noise threshold.  
 

Table 5: Number of packed messages in a plaintext at various BGV levels for 
different message bit lengths. 

BGV Level (L) nSlots 16-bit messages 
(k=16) 

32-bit messages 
(k=32) 

1 ≤ 𝐿 < 12 630 39 19 
12 ≤ 𝐿 < 22 682 42 21 
22 ≤ 𝐿 < 68 1285 80 40 
68 ≤ 𝐿 < 77 1650 103 51 

77 ≤ 𝐿 < 100 2048 128 64 
 

Table 5 lists the number of messages that one plaintext can pack at different BGV levels (𝐿). 
From this table, we can calculate 𝐿 for performing the three fundamental operations on our 24-hour 
ECG data, containing 87,896 toc entries, where we encode each toc entry a “message” (𝑛𝑀𝑠𝑔𝑠 =
87,896), using two different message sizes, 16-bit (𝑘 = 16) and 32-bit (𝑘 = 32), depending on the 
operation. For example, for LQTS detection, we use 16-bit message sizes (𝑘 = 16) on 87,896 
messages (𝑛𝑀𝑠𝑔𝑠 =  87,896). Therefore, combining Table 4 and Equation 4, we derive: 

 

𝐿 > (log2 𝑘 + 1 + ⌈log2 𝑁⌉) ⟹ 𝐿 > (5 + ⌈log2 𝑁⌉) ⟹ 𝐿 > �5 + �log2 �
87,896

�𝑛𝑆𝑙𝑜𝑡𝑠
16

�
��� ⟹ 𝐿 = 18 (12) 

  
𝐿  value can be iteratively computed from Equation 12 as 𝐿 =  18 , which implies packing 42 
messages in each ciphertext containing 682 slots. Although �682

16
� = 42.625 messages can be packed 

into 682 slots, partial messages are not utilized in our implementation for simplicity, causing a wasted 
space of 10 slots in each plaintext. Since each plaintext can hold 42 messages, our 24-hour ECG data 
requires 𝑁 = �87,896

42
� = 2093 ciphertexts.  

 
Evaluation Criteria 
 
We evaluate the performance of the proposed system based on three relevant metrics, each 
quantifying a different operational cost for cloud outsourcing (Amazon Web Services):  

Computation Rate (Γ): We define Γ as: 
 

Γ =
Γ𝑜𝑢𝑡
Γ𝑖𝑛

 (13) 
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where Γ𝑖𝑛 is the time interval for the data being transmitted from the patient’s house into the cloud, 
and Γ𝑜𝑢𝑡 is the computation time in the cloud for this data. This “relative” definition allows us to 
determine whether FHE computations in the cloud can catch up with the rate of the incoming data 
(Γ ≤ 1), or lag behind (Γ > 1). The significance of the Γ metric is its ability to signal the necessity of 
additional storage space, and the added computational latency in providing the final result to the 
doctor. For example, Γ = 2 implies that, 1 hour patient data takes 2 hours to compute, causing a one 
hour delay in providing the results to the doctor, and additional storage space to buffer the incoming 
encrypted data (which is not a trivial amount, as we will shortly see).  

Storage Expansion (Λ): As shown in Figure 6, FHE significantly expands the amount of 
storage required to store the encrypted incoming patient data as well as the FHE public keys. This 
storage expansion becomes worse for increased BGV levels, 𝐿. In our definition, Λ = 10,000 implies 
that, to store one byte of plain data in encrypted format, 10,000 bytes of cloud storage is required. 
  

Network Throughput (Υ): FHE-based computations strain the network bandwidth, since 
large amount of encrypted data must be transmitted over WAN connections (Kwon, et al., 2014). We 
define a third metric, Υ, which determines how much data is being transmitted across the WAN 
during computations. Some cloud operators (e.g., AWS (Amazon Web Services)) only charge for 
outgoing traffic, not for the incoming traffic. Therefore, we break Υ into two separate parts: Υ𝑝𝑎𝑡𝑖𝑒𝑛𝑡 
is the amount of data transferred from front-end devices used by the patient, and Υ𝑑𝑜𝑐𝑡𝑜𝑟 is the data 
transferred from cloud to back-end device used by the doctor.  
 
Experimental Results 
 
We present our experimental results in Table 6 for the aforementioned three fundamental operations 
over 24 hours of ECG data, containing 87,896 toc values. Although every row in Table 6 relates to the 
same 24-hour ECG data described in detail in the previous section, the partitioning of the data differs 
among different rows. For example, for the LQTS detection, the last row indicates 𝑁 = 2093, 𝐿 =
18, and Γ = 0.36. These are the results we derived in Equation 12 at the end of this section. From 
Table 6, we see that, Γ = 0.36, translating to a computation time of 24 ×  0.36 =  8.64 hours, or, 
31,485 seconds, as indicated in the “Run-time” column. Since Γ < 1 , we deduce that, the FHE 
computations can be done faster than the rate of data arrival, thereby eliminating the necessity to 
buffer large amounts of data in the cloud. However, the 24-hour ECG data still takes up 52, 700 × 
more space than the original raw data, as indicated in the Λ column. Computing LQTS requires 
shuttling 8.28GB of encrypted data from the patient’s house to the cloud (the Υ𝑝𝑎𝑡𝑖𝑒𝑛𝑡 column) and 
requires transferring 4.1MB of resulting ciphertexts (the Υ𝑑𝑜𝑐𝑡𝑜𝑟 column). The significant disparity is 
due to the substantial amount of aggregation performed during LQTS detection, leaving only the 
highly summarized results that need to be transferred to the doctor’s smartphone. This is good news in 
the sense that, cloud operators, such as AWS, only charge for outgoing data, which is orders of 
magnitude lower in this case.  
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Table 6: Operational cost of medical applications based-on: Computation Rate (𝜞), 
Storage Expansion (𝜦) and Network Throughput (𝜰). 

Operati
on 

ECG 
Data 

Interval 
N L Enc. 

(sec) 
Dec. 
(sec) 

Ctxt 
(MB) 

Ptxt 
(MB) 

Run-
time 
(sec) 

Γ 
 

Λ  
(K) 

Υ𝑝𝑎𝑡𝑖𝑒𝑛  
(GB

) 

Υ𝑑𝑜𝑐𝑡𝑜𝑟  
(GB) 

 1 min 3 14 0.30 0.24 3.17 274.95 31.2 0.52 41.2 6.5 4564.8 
 5 min 15       18      0.41         0.31         4.05         352.23         81.6 0.27 52.6 8.3 1166.4 
 15 min 44 21 0.45 0.39 4.72 399.12 215.9 0.24 61.3 9.6 453.1 
Averag
e 30 min 46 22 1.88 0.77 14.81 1721.5

5 677.7 0.38 107.
4 15.9 710.9 

Heart 60 min 92 23 1.96 0.80 15.49 1783.9
8 1317.4 0.37 112.

2 16.6 371.7 

Rate 3 hr 275 26 2.21 0.90 17.55 2038.9
5 4272.7 0.40 127.

2 18.8 140.4 

(k=32) 6 hr 550 27 2.30 0.94 18.24 2093.7
5 8679.8 0.40 132.

1 19.6 72.9 

 12 hr 1099 29 2.46 1.05 19.63 2247.2
2 

18803.
9 0.44 142.

1 21.1 39.3 

 24 hr 2198 31 2.69 1.15 21.03 2414.2
5 

40997.
4 0.47 152.

3 22.6 21.1 
 

 1 min 2 7 0.08 0.03 0.90 74.32 3.9 0.07 12.6 1.98 1296.1 
 5 min 8 9 0.11 0.05 1.12 96.39 21.6 0.07 15.6 2.47 322.6 
 15 min 24 11 0.11 0.05 1.34 110.27 99.9 0.11 18.7 2.95 128.6 
LQTS 30 min 44 12 0.13 0.06 1.46 121.73 216.9 0.12 18.9 2.98 70.1 
 60 min 88 13 0.28 0.22 2.96 249.03 1362.4 0.38 38.4 6.05 71.1 
(k=16) 3 hr 262 15 0.33 0.26 3.39 287.73 3215.2 0.30 44.1 6.93 27.2 
 6 hr 524 16 0.39 0.27 3.61 308.25 6741.8 0.31 46.9 7.38 14.5 
 12 hr 1047 17 0.40 0.28 3.83 323.87 14393.

3 0.33 49.7 7.83 7.7 

 24 hr 2093 18 0.41 0.31 4.05 352.23 31485.
1 0.36 52.7 8.28 4.1 

 1 min 2 7 0.08 0.04 0.90 74.32 3.9 0.07 12.6 1.98 1296.1 
 5 min 8 19 0.41 0.32 4.27 36.07 198.1 0.66 15.6 2.47 1229.7 
Min 15 min 12 25 2.12 0.86 16.86 1984. 

95 1185.4 1.32 18.7 2.95 1618.6 

Max 30 min 23 31 2.58 1.06 21.03 2414.2
5 2852.8 1.58 18.9 2.98 1009.5 

 60 min 46 37 3.09 1.27 25.27 2880.3
7 6946.8 1.93 38.4 6.05 66.5 

HR 3 hr 138 49 4.28 1.73 33.86 3850.3
7 

28459.
1 2.64 44.1 6.93 270.9 

 6 hr 275 55 4.75 1.88 38.21 4372.2 70849 3.28 46.9 7.38 152.8 
(K=16) 12 hr 550 61 4.99 2.05 42.57 4918.2

8 
14818

9.6 3.43 49.7 7.83 85.2 

 24 hr 1099 67 5.04 2.29 46.94 5362.7 32533
1.9 3.77 52.7 8.28 46.9 

 
 
 Let us now focus on the remaining rows of Table 6. The specific row we just described was 
based on 24 hours of accumulated patient data, acquired, transmitted, and computed as a whole 
(indicated as “24 hr” in the “ECG Data Interval” column). This row assumes that, the LQTS detection 
does not start until the entire 24-hour dataset arrives. Alternatively, the very first row of the LQTS 
detection (indicated as “1 min”) displays 𝑁 = 2, 𝐿 = 7 and Γ = 0.07. This can be interpreted as: 
When the entire 24-hour data is transmitted 1 minute at a time, the amount of each chunk is 
significantly smaller: 1 minute chunks require only 2 ciphertexts (𝑁 =  2), each of which is encoded 
at an FHE level of 𝐿 =  7. The computation time for each chunk is only 3.9 seconds, corresponding 



 
 ©IGI Publishers  2015. This chapter appears as O. Kocabas, T. Soyata, "Towards Privacy-Preserving Medical Cloud 
Computing Using Homomorphic Encryption". 

to Γ = 3.9𝑠
60𝑠

= 0.07. Although this row looks computationally-advantageous based on the computation 
metric (Γ), we see that, it hurts the Υ𝑑𝑜𝑐𝑡𝑜𝑟 metric, since the total amount of data to transfer 24 hours 
of data in 1 minute chunks ends up being 1296.1 MB. To state alternatively, the smaller the 
granularity of the results, the worse the Υ𝑑𝑜𝑐𝑡𝑜𝑟 becomes, and the better the Γ is. The storage required 
for these results improves when the chunk size is smaller due to the reduced level, 𝐿, to encrypt these 
chunks. For example, while Λ = 12,600 for 1 minute chunks, it increases to Λ = 52,700 for a single 
large 24-hour chunk. The trade-offs involving these three parameters become less obvious when the 
cloud operators’ billing is based on availability of the resources. For example, if the application has 
the flexibility to wait for the results longer, different rows in Table 6 might provide different cost 
alternatives for the healthcare organization, which is the rationale for our detailed analysis. 
 
CONCLUSIONS AND FUTURE WORK 
 
In this chapter, we proposed a novel method for privacy- preserving medical cloud computing using 
Fully Homomorphic Encryption (FHE). Due to the computational complexity of FHE, we provided a 
detailed analysis of our approach on three fundamental operations: 1) calculation of the average heart 
rate, 2) calculation of the Minimum and Maximum heart rate, and 3) automated detection of the long-
QT Syndrome (LQTS). We demonstrated our results on an FHE-driven program by using a 24-hour 
set of ECG samples from the THEW database.  
 Our results show that, a healthcare organization can utilize this program as of today, despite 
its performance disadvantage. We demonstrated that, the afore- mentioned three fundamental 
computations could be performed at the same rate of data arrival, eliminating the need to store 
excessive amounts of data. We defined three performance metrics related to the operation of FHE: 
Γ,Λ and Υ  quantify the computational, storage, and bandwidth requirements of these three 
fundamental operations. Our results show that, these operations can be performed with reasonable 
resources, available within cloud computing platforms today. Due to the continuously improving 
pricing schemes for cloud services and the algorithmic improvements on FHE, the practicality of 
FHE-based medical cloud computing will improve, and may eventually become commonplace. 
Therefore, our study is a good step towards making FHE-based medical cloud computing a reality.  
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KEY TERMS AND DEFINITIONS 
 
Cloud Computing: A computational paradigm, in which computational, storage, networking and 
potentially other resources are rented from a Cloud Service provider to avoid excessive infrastructural 
investments. 
 
Protected Health Information (PHI): Information that is linked to an individual's medical condition 
and contains private content that must be protected. This information includes health records, names, 
addresses, social security numbers to name a few. 
 
Health Insurance Portability and Accountability Act (HIPAA): A set of policies to regulate the 
protection of the privacy of the medical information (PHI) of individuals.  
 
Healthcare Organization (HCO): Organizations that provide health care that are subject to HIPAA 
rules. These organizations include not only hospitals, but, a chain of their third party vendors that 
provide services to the hospitals. A breach in this chain could cause any entity inside the chain to 
involuntarily violate HIPAA. 
 
Business Associate Agreement (BAA): An agreement signed by third party service providers to 
ensure the protection of private health information according to HIPAA rules. In other words, any 
third party vendor of an entity that is subject to HIPAA rules (e.g., hospitals) must have their third 
party vendors sign a BAA. 
 
Symmetric-key Cryptography: A type of cryptography that uses only a single key for both 
encrypting and decrypting messages.  
 
Public-key Cryptography: A type of cryptography that requires a key pair: public and private key. 
While the public key is used for encryption and made available to the public, private key is used for 
decryption and kept secret for the parties that are privately communicating over a public channel. 
 
Advanced Encryption Standard (AES): A widely used symmetric-key cryptography method based 
on block ciphers that contain 128-bit message blocks for encryption and decryption.  
 
Homomorphic Encryption (HE): A special class of public-key cryptography that enables 
computations on ciphertexts without decrypting them. Computations on ciphertexts translate to 
meaningful operations on the underlying plaintexts.  
 
Additive Homomorphic Encryption: There are two common HE schemes based on the computation 
that they can perform on ciphertexts: Additive HE and Multiplicative HE.  Additive HE schemes can 
only perform addition of the underlying plaintexts. 
 
Multiplicative Homomorphic Encryption: Multiplicative HE schemes can perform only 
multiplications of underlying plaintexts. 
 
Fully Homomorphic Encryption (FHE): A homomorphic encryption scheme that can perform 
addition and multiplication operations on ciphertexts. These operations translate to additions and 
multiplications of the corresponding plaintexts and enable the computation of any function over the 
ciphertexts.  
 
Bootstrapping: Method that was proposed by Gentry’s first FHE scheme, which allows resetting the 
noise inside ciphertexts without decrypting them. Bootstrapping is achieved by evaluating decryption 
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function homomorphically. This method is also known as recryption and it is widely used in current 
FHE schemes.  
 
Leveled Fully Homomorphic Encryption: A sub-class of fully homomorphic encryption that allows 
limited number of multiplications on FHE encrypted ciphertexts. The limit of multiplications to be 
performed is adjusted beforehand and based on multiplication depth, which is also called the Level. 
 
Very Large Scale Integration (VLSI): Design/process technique that embeds millions or even 
billions of transistors into a single integrated circuit (IC) chip. This allows the VLSI IC to perform 
highly complex computational tasks. 
 
Single Instruction Multiple Data (SIMD): A parallel computation method that relies on executing 
the same instruction over a set of data. This method is based on parallelism at the data-level.  
 
Electrocardiogram (ECG): Recording of the electrical activity of the heart over a period of time. 
The recording provides useful information to diagnose possible abnormalities related to the heart. 
 
Holter monitor: A portable monitoring device used by the patients for continuous monitoring of 
ECG activities outside the hospital while engaging their daily activities. 
 
ECG Patch: A patch consisting of sensors which are attached to a patient to monitor the electrical 
activities of patients’ heart and record them as ECG signals. 
 
RR Interval: The interval between the two R waves of an ECG, which is usually used to compute 
average heart rate of the individuals.  
 
QT Interval: The interval between Q and T waves of an ECG, which is usually used to diagnose 
possible problems such as ventricular arrhythmia that can cause sudden deaths. 
 
Long QT syndrome (LQTS): A syndrome that causes prolonged QT intervals. It could be inherited 
through the genes or acquired later and can cause sudden deaths. 
 
Torsades des Pointes (TdP): A heart condition that can cause sudden deaths. It can be diagnosed by 
measuring QT intervals. 
  
 
 


