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Portable medical devices generate volumes of data that 

could be useful in identifying health risks. The proposed 

method lters patients’ electrocardiograms (ECGs) and 

applies machine- learning classi ers to identify cardiac 

health risks and estimate severity. The authors present 

the results of applying their method in a case study.

A s person alized m edicine becom es increas-
ingly m ore soph ist icated and a ordable, 
por table m edical devices h ave becom e ubiq-
u itous and m on itor ing applicat ion s have 

begu n to blend a range of funct ion s. AliveCor, for exam-
ple, o ers an inexpen sive sm ar tphone elect rocardio-
gram (ECG) at tach m ent th at can sam ple an individual’s 
ECG, calcu late rea l-t im e stat ist ics, and share the record-
ing with  a physician .

In  aggregate, por table m edical devices generate data 
at a much h igher rate th an convent ion al system s, wh ich 
can overwhelm m edical person nel who must review 
repor ts for m any pat ien ts. However, the data also pres-
en ts scien t ist s and engineers with  the oppor tun ity to 
create health-m on itor ing and decision-suppor t system s 
th at en h ance and person alize healthcare. For exam ple, 

decision-suppor t system s based on m ach ine learn ing 
(ML) can  ease the review bu rden  by lter ing noise, errors, 
and ir relevant in form at ion so that the data reviewed 
con tain s on ly relevant clin ical m arkers. ML algorith m s 
learn  pat tern s with in  the data, wh ich serve as the basis 
for predict ion s about pat ien t health . A m ach ine can look 
th rough m illion s of repor ts and m edical records to iden-
t ify previously u n known drug in teract ion s.1 Such algo-
r ith m s can sign i cant ly im prove diagnost ic accu racy, 
healthcare quality, and pat ien ts’ quality of life.

ML a lgor ith m s h ave m any poten t ia l applicat ion s in  
sm ar t hea lth . To explore one of t hese, we developed a 
m ethod th at lters data from  lon g-term  ECG record in gs 
of pat ien t s with  Lon g QT Syndrom e (LQTS), u ses ML to 
iden t ify circad ian  pat tern s th at sign a l r isk of sym p-
tom s such  as card iac ar rhyth m ia, and est im ates the 

Machine Learning in 
Cardiac Health Monitoring 
and Decision Support



 N OV EM B ER 2 0 6  39

sever it y of t h at r isk. LQTS is a d isor-
der th at pr im ar ily a ect s ion  ch an-
nels in  hear t m u scle cells, a llowing 
abnorm al elect r ica l act ivit y to occu r 
th at can  lead to sudden  and dan gerou s 
a r rhyth m ias. We tested ou r m ethod 
u sing fou r classi cat ion  m ethods 
again st a database of 434 24-hou r ECG 
record in gs. We a lso explored how ou r 
m ethod m igh t sca le with  the volu m e 
of m edica l data. Sca labilit y is rapid ly 
becom in g cr it ica l in  m edica l stud ies. 
An alyzin g m assive am ou n ts of data 
not on ly prom otes a deeper u nder-
stand in g of the m ech an ism s th at 
cau se d iseases but a lso m akes per-
son a lized t reatm en t possible. Such 
an a lyses can  lead to breakth rough s 
in  relat in g genes to d iseases as well as 
provid in g the basis for t reatm en t or i-
en ted to a par t icu lar pat ien t ’s lifest yle 
and genet ic m akeup.

AN ML-BASED SYSTEM
We envision incorporating our method 
in a remote health- mon itoring system 
that can provide feedback and decision 
support to a clin ician. The system would 
use devices that acqu ire data th rough 
the Internet of Things and are connected 
to a cloud-based decision-support sys-
tem.2 The technological components 
of such a system are with in reach , and 
advanced devices for acquiring medical 
data are becom ing com mercially avail-
able.3 Soph ist icated and powerfu l ML 
algorithm s are already well understood 
and accessible.4

However, the hum an brain has 
un m atched reason ing abilit ies, so the 
physician is st ill the most impor tant 
par t of any medical decision- support 
system. Thus, the goal of our envisioned 
system is to provide physicians or other 
clin icians with concise, relevant in for-
m ation that can increase their diagnos-
t ic e ciency and accuracy.

Work ow
Figu re 1 is a conceptua l d iagram  of 
the work ow for a hea lthcare system 
th at stores pat ien t data elect ron i-
ca lly. After preprocessing and lter-
ing pat ien t data, the system stores it 
as an  elect ron ic health  record (EHR). 
Each EHR gradu ally en r iches the data-
base, wh ich  will im prove the accu racy 
of fu tu re ML resu lt s. A large database 
with  m any pat ien t s’ records m ight not 
be as u sefu l as a database with  fewer 
pat ien ts but m ore in form at ion  on  
each  pat ien t.

When m any pat ien ts’ records are 
aggregated and an alyzed, steps m ust 
be taken  to protect the individuals’ 
pr ivacy. Most protected health  in for-
m at ion (PHI), such as n ames and bir th-
days, can be rem oved from records in  
com pliance with  the Health  In su rance 
Por tabilit y and Accou ntabilit y Act 
(HIPAA) without det r im ent to the data 
m in ing process.5 However, in  some 

cases, it wou ld be desirable to obtain  
m ore detailed in form at ion about cer-
tain  pat ien ts from  their physician s—
an im possibilit y because it wou ld 
violate HIPAA. Con sequen t ly, regu la-
t ion , not just tech nology, can lim it the 
acqu isit ion of needed data.

Even after rem oving ident ifying 
in form at ion , wh at rem ain s cou ld 
be com bined to stat ist ica lly reveal a 
pat ien t’s ident ity. On one h and, PHI 
in form at ion such as age, gender, 
race, and genet ic d isorders, is cr it ica l 
to developing an e ect ive decision- 
suppor t system . On the other, includ-
ing too much in form at ion on the 
wrong com puter system r isks violat-
ing HIPAA. Applicat ion s can a lso cre-
ate pr ivacy violat ion s because som e 
requ ire explicit ly protected in form a-
t ion  such as a pat ien t’s voice pr in t6 or 
city of residence. Researchers m ust 
keep these rest r ict ion s in  m ind du r ing 
a ll stages of a study.
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FIGURE 1. Conceptual work ow of a remote health-monitoring and decision-support 

system. Data from a patient at a remote location is acquired, preprocessed, and used to 

provide decision support in several forms. Visualization provides simple summaries to 

the physician or other clinician without any recommendations. Alerts are triggered by 

more urgent events, such as the violation of an established threshold. Classi cation of 

the patient’s condition is based on the results of machine learning (ML), which involves 

comparing the patient to existing electronic health records (EHRs). AMI: acute myocardial 

infarction; Q, R, S, T: waves that indicate cardiac electrical state (on an electrocardiogram 

[ECG]); QT, RR, QTc, and ST: intervals in the cardiac electrical cycle, also measured on an 

ECG; TdP: torsades de pointes, a cardiac arrhythmia.
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Decision support
An e ect ive ML-based healthcare 
system capita lizes on  the com puter’s 
vast com putat ion al capabilit y and the 
physician’s reason ing abilit y. Both 
m ach ine and physician are looking for 
pat tern s, but the physician can not an a-
lyze every hear tbeat of every pat ien t 
or be fam iliar with  every disease’s 
nuances. The m ach ine can do a ll these 
tasks and then  present its conclusion s 
to the physician for con rm at ion .

Suppor t  t ypes. As Figu re 1 shows (see 
box at lower r igh t), we envision th ree 
types of decision suppor t: visualiza-
t ion , aler ts, and classi cat ion . 

Visualizat ion puts long-term m on-
itor ing data in  a concise and in tu it ive 
form at,7 wh ich cou ld sign i cant ly 
reduce the physician’s data bu rden 
and en able t im ely and accu rate deci-
sion  m aking.

Alerts are alarm s that activate when 
a value crosses an established th resh-
old. The value can be simple to check, 
or the resu lt of a more advanced algo-
rithm. The th reshold cou ld be a clin i-
cal standard—for example, 480 m s for 
QTc, wh ich is a measure of the ventric-
u lar depolarization and repolarization 
duration—      or it cou ld be tailored to a 
patient. For example, the physician 
m ight want to be noti ed on ly if a par-
t icu lar patient’s QTc exceeds 600 m s.

Classi cat ion is the process of pre-
dict ing the group a pat ien t belongs in , 
such as people with  a speci c geno-
type or people at r isk for cer tain  car-
diac even ts. Predict ion of shor t-term 
outcom es is a pr im ary goal. For exam-
ple, the m ach ine m ight predict that a 
pat ien t is at h igh r isk for a m yocardia l 
in farct ion in  the next 12 hou rs.

The outputs from these suppor t 
system s, such  as plots and recom -
m endat ion s, wou ld be at tached to the 

t ypical ECG repor t t h at a card iologist 
reviews. When rea l-t im e m on itor-
ing reveals an  u rgen t issue, an  a ler t 
wou ld im m ediately be sen t to both  the 
pat ien t and physician  th rough SMS, 
pager, or an applicat ion .

Evolvin g sym biosis. The physician  
is st ill at the head of th is process— 
ordering tests, analyzing records, 
adjust ing prescr ipt ions, and so on . 
The m ach ine’s visualizat ions and 
recom mendat ion s are simply addi-
t ional decision- m aking tools. Over 
t ime, the database will expand, and 
the m ach ine’s classi cat ion s will be 
more accu rate. But im provements will 
be sym biot ic: as the m ach ine’s accu-
racy grows, the physician will develop 
an in tu it ion for how and when the 
m ach ine m akes those accu rate classi -
cat ion s and recogn ize when it m ight be 
fallible. For exam ple, a pat ien t m ight 
have an abnorm al T-wave morphology 
that the algorith m s did not process 
correct ly, or a pat ien t’s hear t rate had 
not reached the poin t at wh ich prob-
lem s wou ld be ident i able. The physi-
cian can recogn ize the m ach ine’s lim-
itat ion s, and m ight opt for addit ional 
methods to measure r isk such as pre-
scribing a drug or exercise challenge or 
conduct ing a m anual ECG an alysis.

CASE STUDY PARAMETERS
In a case study to evaluate ou r method, 
we exploited ML’s pat tern- recogn it ion  
abilit ies to classify r isk in LQTS 
pat ien ts. The QT in terval, wh ich is typ-
ically used to measu re the durat ion of 
ventr icu lar repolar izat ion (a clin ical 
m arker of the hear t’s electr ical act iv-
ity), can be abnorm ally long in some 
people who are taking cer tain medi-
cat ion s or have cer tain genet ic disor-
ders.8 A prolonged QT interval can t r ig-
ger arrhyth m ias such as torsades de 

poin tes (TdP), wh ich are likely to cause 
ser ious sym ptom s such as seizu res, 
faint ing, or sudden death . It is there-
fore cr it ical to m on itor the QT in ter-
val in  pat ients prone to th is disorder 
using long-term ECG recordings. Data 
recordings of am bu latory pat ien ts over 
several hou rs or days are called Holter 
recordings or simply Holters.

Our study focused on congen ital 
LQTS rather than the drug-induced 
form . In the database used for the 
study, we knew wh ich recordings were 
from pat ients with sym ptom s, but we 
did not know if the sym ptom s came 
before or after the ECG recording. Con-
sequent ly, we had no way to use ML to 
predict when sym ptom s wou ld occur 
or to detect symptom s in  real t ime. 
In stead, we at tempted to ident ify when 
a recording came from a pat ient whom 
we knew had sym ptom s in the past 
or wou ld have them in  the futu re. In  
other words, we at tem pted to ident ify 
the pat ient’s r isk—an im portant con-
cern for physician s, who must often 
prescribe medicat ions and im plantable 
devices on the basis of the perceived 
r isk of sym ptom s. (Symptom s in th is 
context are events, such as syncope, 
that are t r iggered by prolonged QT.)

Iden t ifying h igh-r isk pat ien ts who 
need ext ra prescr ipt ion s or m on itor-
ing or low-r isk pat ien ts who wou ld not 
bene t from those bu rden s wou ld be 
h igh ly valuable to both  the physician  
and pat ien t. Addit ion a lly, despite the 
lim itat ion s of th is par t icu lar data-
base, th is study la id the grou ndwork 
for a fu tu re study at a t im e when 
a dataset with  clin ical outcom es 
becom es available.

Data preprocessing
Figu re 2 illu st rates the steps th at 
t ran sform raw ECG data in to clin i-
ca lly u sefu l m easu rem ents. Raw data 
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con ta in s m assive redu ndancies as 
well as ectopic hear tbeats and obvi-
ou s noise and er rors, wh ich  will not be 
u sefu l in  later processing. Preprocess-
ing ext racts on ly clin ica lly relevan t 
m arkers from  the data, wh ich reduces 
the data fed in to the ML algor ith m  by 
m u lt iple orders of m agn itude wh ile 
drast ica lly im proving classi cat ion 
accu racy and execut ion  t im e. The 
delineated hear t  beat (Clinical markers 
box) h igh lights several importan t m ea-
surem ents of the card iac elect r ica l 
cycle. At r ia l and ven t r icu lar depolar-
izat ion  and repolar izat ion  are repre-
sen ted on  the ECG as a ser ies of waves: 
the P wave followed by the QRS com-
plex and the T wave. The P wave occu rs 
du r ing at r ia l depolar izat ion— when 
the at r ia con t ract. The QRS com plex 
indicates ven t r icular depolarization— 
when the ven t r icles con t ract; at it s 
end is the J poin t . The T wave occu rs 
du r ing ven tr icu lar repolar izat ion—
when the ven t r icles relax. Du rat ion s, 
am plitudes, and sh apes at var ious 
par ts of the ECG can  be u sed to d iag-
nose m yr iad illnesses.

Algorithm training
To ident ify pat ien ts at r isk for LQTS 
sym ptom s, we t rained ML algor ith m s 
using input var iables ext racted from 
raw ECG data. As Figu re 2 shows, 
u sefu l in tervals and am plitudes are 
available after on ly two preprocessing 
steps: delineat ion  and the com puta-
t ion of clin ical m arkers.

We rst an notated im por tan t 
m arkers in  the ECG recording (such as 
the P, Q, R, S, and T peaks, on sets, and 
o sets) using delineat ion software to 
iden t ify these poin ts.9,10

The relevance of each clin ical 
m arker depends on the disease being 
studied. For example, STe, the eleva-
t ion (voltage) du ring the ST segment, 

is of in terest in hear t-at tack cases, and 
the shape of the P wave is of in terest to 
diagnosing at rial en largement. Many 
diseases a ect the QT in terval and its 
subintervals (QRS, the J point to  T peak, 
and T peak to T end).

In  ou r study, the QT and RR in ter-
vals were the m ost relevant m arkers. 
The QT in terval alone is not enough 
in form at ion , because it will n atu ra lly 
lengthen and shor ten in  all ind ivid-
uals as their hear t rate decreases or 
increases. The RR in terval—the du ra-
t ion  of a com plete cardiac cycle— 
provides enough information to correct 
the QT for hear t rate. We calcu lated 
the corrected QT (QTc) u sing the Frid-
er icia equat ion:11

=QTc
QT

RR

s
3

Reducing dimensionality
Preprocessing substantially reduces the 
data to be reviewed. The raw ECG data—
sampled at 200 Hz, 16 bits per sample, 
on 3 leads, and over 24 hours—needed 
100 Mbytes of storage. If on ly QTc inter-
val values are requ ired to detect LQTS 
symptom s, the storage requirement 
lowers to 1 Mbyte. Storage capacity 
alone is not a su cient reason to have 
preprocessing; addit ional storage space 
is relatively inexpensive. Rather, pre-
processing is necessary when using ML 
algorithm s because the data reduction  
translates direct ly to a dimensionality 

reduction and faster processing in sub-
sequent steps.

Reduced d im en sion ality is im por t-
an t because the “cu rse of d imen sion-
alit y” rem ain s a di cu lt problem in  
categorizing big data. That is, large 
volu m es of data h ave a daun t ing nu m-
ber of featu res, with  each featu re h av-
ing m yriad possible values. There are 
so m any d im en sion s to work with  
th at it is too easy to separate the t rain-
ing data in to the correct groups. The 
learned m odel becom es speci c to the 
t rain ing set rather th an generalizing 
to other data—a problem known as 
over t t ing. Thus, an  enorm ous am ount 
of t rain ing data is requ ired to en su re 
th at there are several sam ples with  
each com bin at ion of values. With  a 

xed num ber of t rain ing sam ples, 
ML’s predict ive power can  decrease as 
dim en sion ality increases.

Method selection
Among the ML methods for classi ca-
t ion , supervised learn ing and cluster-
ing are the most popu lar. In our study, 
we focused on supervised learn ing. The 
alternative to supervised learn ing is 
clustering, also known as unsupervised 
learn ing, wh ich generally tries to group 
data points into clusters according to 
their proxim ity to one another. A new 
data point can then be classi ed on the 
basis of the cluster into wh ich it best ts.

Ar t i cia l neu ral networks, in spired 
by the neu ron web in  the hu m an brain , 
can be u sed for both  supervised and 
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FIGURE 2. Detailed preprocessing steps using the work ow from Figure 1 . The raw ECG 

signal contains too much data to feed into most ML algorithms, and the data has massive 

redundancy across leads (sensor locations) and heartbeats, as well as noise and errors. 

Preprocessing lters the raw ECG waveforms to extract only relevant clinical markers, 

such as the durations of the QRS complex and P and T waves.
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u n supervised learn ing. Deep networks 
u se m any layers of ar t i cial neu ron s 
to form input data abst ract ion s, wh ich 
lead to the form at ion of a n al classi-

cat ion layer. In  each layer, weights 
are applied to featu res of the previous 
layer to opt im ize perform ance.

The supervised learn ing methods 
that best t ou r study were support vec-
tor m ach ine (SVM), decision t ree, and 
nearest neighbors. These algorithm s 
classify previously unseen data points 
based on some funct ion of the data 
points they have already seen . In an 
at tempt to improve accuracy, some ML 
algorithm s factor in the resu lts of sev-
eral classi ers in order to m ake their 
decision. Random forest and AdaBoost 
are among the most popu lar methods to 
use th is ensemble learn ing tech n ique.

Table 1 lists the pros and con s of the 
fou r m ethods we con sidered in  ou r 
evaluat ion: k-nearest neighbors, SVM, 
random  forest , and AdaBoost. The 
table is u sefu l in  ident ifying the best 
classi er for a given  problem and set of 
com putat ion al con st rain ts.

k-n ea rest  n eigh bor s. The k-nearest 
neighbors a lgor ith m  nds the shor t-
est d istance between a new test ing 
poin t and adjacen t t ra in ing poin ts. 
It then  classi es the test in g poin t as 
the m ost com m on class am on g it s 
 k-nearest neighbors.

Suppor t  vect or  m ach in e. The SVM 
m ethod uses a t rain ing poin ts subset 

to create hyperplanes th at d ivide the 
data in to classes, wh ich it keeps as far 
apar t as possible (thereby m axim izing 
the d istance between the hyperplane 
and di eren t class sam ples). SVMs 
rely on a linear or non linear featu re 
com bin at ion , depending on the kernel 
declared in  the a lgor ith m . We tested a 
linear kernel as well as a radial basis 
funct ion (RBF) kernel.

Ran dom  forest . The random forest 
a lgor ith m is an en sem ble learn ing 
m ethod th at averages the resu lts of 
several decision  t rees to classify its 
sam ples. As the n am e im plies, each 
decision  t ree is t rained on a random 
t rain ing data subset , perh aps u sing 
random featu res as well.

A d a Boos t .  AdaBoost , sh or t  for 
adapt ive boost in g, aggregates t h e 
resu lt s from  m an y weak cla ssifier s 
by iterat ively ret ra in in g t hem  to 
focu s on  fix in g m ist akes from  t h e 
previou s rou n d. It  t h en  averages t h e 
resu lt s. In  ou r exper im en t s, Ada-
Boost  a lways u sed decision  t rees a s 
t h e weak cla ssifier.

RUNNING THE CLASSIFIERS
We accessed a database contain ing 
24-hou r ECG record ings of 480  LQTS 
pat ien ts, including dem ograph ic 
in form at ion  such as gender, age, 
and speci c LQTS genot ype.12 We 
rest r icted ou r study to 434 record in gs 
of pat ien ts with  the m ost com m on 

LQTS genot ypes (LQT1 and LQT2) and 
the m ost com plete dem ograph ic in for-
m at ion  (such as age and gender). The 
subjects’ average age was 25 ± 18 years 
(newborn s to sen ior cit izen s); 55 per-
cen t of the subjects were fem ale, and 
67 percen t h ad the LQT1 m utat ion . 
Ou r goal was to determ ine wh ich  of 
the pat ien ts wou ld show sym ptom s 
of LQTS, such as seizu res or syncope. 
Th at is, we were t r ying to iden t ify 
ECG pat tern s th at cou ld reveal wh ich 
genot ype- posit ive pat ien ts will a lso 
be phenotype- posit ive. Given  som e 
m easu rem ents from an  ECG, a classi-

er shou ld sim ply tell u s “sym ptom s 
expected” or “no sym ptom s expected,” 
perh aps with  a con dence value.

Algorithm implementation
We im plemented all the classi cat ion 
algorith m s—k-nearest neighbors, lin-
ear SVM and RBF SVM, random forest , 
and AdaBoost—using scikit-learn , an  
open sou rce Python library bu ilt on  
SciPy and Num Py.4 To assess a clas-
si er’s accuracy, we set aside 30 per-
cent of the sam ples for test ing, and 
t rained on ly on the rem ain ing 70 per-
cent. Because some algorith m s include 
in herent random ness in their opera-
t ion and because the division between 
train ing and test ing data is a lso ran-
dom , we repeated the cycle of select ing 
t rain ing data, t rain ing, and test ing 50 
t imes for each classi er.

The average resu lt from these 
trials— the Monte Carlo cross- validation  

TABLE 1. Pros and cons of four supervised learning classi ers.

Classi er Advantages Disadvantages

k-nearest neighbors Simple to implement 
Easy to understand and interpret

Sensitive to noisy data and anomalies 
Computationally expensive for large datasets

Support vector machine Flexible with nonlinear data 
Scales up with large sets of data 
Relatively resistant to the “curse of dimensionality”

Di cult to interpret feature importance 
Yields possibly unreliable con dence estimates

Random forest Alleviates over tting problem 
Easy to extract feature importance 
Resilient to missing data 
Scales to large datasets

Increases bias relative to single decision tree 
Di erent results possible in retraining on same data

AdaBoost Automatically reduces dimensionality 
Relatively fast

Sensitive to noisy data and anomalies
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score—told us how well a classi er 
would likely perform. The worst resu lt 
showed how low a classi er’s accuracy 
cou ld be when the data was not even ly 
distr ibuted across the random train ing/
test ing split (based on its underlying 
properties). For example, if most of the 
out liers or noisy recordings end up in  
the test set, or almost all of the asymp-
tom atic patients end up in the train ing 
set, our trained model will not m atch 
up well with the data it’s tested against. 
For classi ers that requ ire input data to 
be norm alized, we used scikit-learn’s 
 StandardScaler() function.

Feature selection
The fou r ML methods we u sed have 
in heren t st rength s and weaknesses, 
but their perform ance was a lso con-
st rained by the data we provided 
them . We knew that QTc, and there-
fore QT and RR, are the measu rem ents 
that cardiologists u se m ost often to 
determ ine whether a LQTS pat ien t is 
in  danger. We also knew that people 
with  di eren t LQT genotypes tend to 
show m ore QTc prolongat ion at d if-
feren t t im es of the day.13 We there-
fore decided to provide hou rly QT and 
RR measu rem ents as input to the ML 

classi ers. Each of ou r sam ples for 
training or classi cation consisted of 
48 values (24 for QT and 24 for RR); 
increasing th at num ber r isked in ict-
ing the cu rse of d im en sion ality.

To reduce dimen sion ality even  
more, we u sed ch i-square (χ2) tests to 
autom at ically select featu res th at were 
likely to be the m ost u sefu l. In  general, 
the fewer the dimen sion s in  the input , 
the fewer t rain ing sam ples are needed 
to achieve good performance, and the 
faster classi ers will run . Featu re 
select ion  m ethods are a lso u sefu l in  
the discovery of previously un known 

No. of training samples

50
0.50

0.55

0.60

0.65

0.70

0.75

100 150 200 250 300

Linear SVM
RBF SVM
AdaBoost
Random forest
k-nearest neighbors 
Guessing

Ac
cu

ra
cy

 o
n 

te
st

 d
at

a

No. of training samples
50

0.25

0.35

0.35

0.40

0.45

0.50

0.55

0.60

0.65

100 150 200 250 300

Ac
cu

ra
cy

 o
n 

te
st

 d
at

a

No. of training samples
50

10-1

101

102

103

100

100 150 200 250 300

Tr
ai

ni
ng

 ti
m

e 
(m

s)

No. of training samples
50

10-1

101

100

100 150 200 250 300

Cl
as

si
ca

tio
n 

tim
e 

(m
s)

(a) (b)

(c) (d)

FIGURE 3. Classi er performance in the study. The input features were hourly QT and RR measurements for one day. Each data point is 

an average of 50  trials for which we randomly selected different training and testing data. Approximately 52  percent of the patients did 

not have symptoms, so the thin dashed line in (a) average accuracy and (b) minimum accuracy represents the performance achievable 

by simply guessing “no symptoms” every time. (c) Training time represents training conducted for increasingly larger subsets of the full 

training dataset of 304 samples, and (d) classi cation time represents how long validation took for the full test set of 130 samples. 

AdaBoost always used decision trees as the weak classi er.
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pat tern s and correlat ion s between 
variables. For exam ple, the m ach ine 
m ight nd th at pat ien ts with  a very 
speci c genet ic m utat ion are m ore at 
r isk than others with  seem ingly sim-
ilar mutat ion s or th at a measu rem ent 
that is t ypically not u sed in  the clin ic 
actually carr ies sign i cant in form a-
t ion . Even if no new relat ion sh ips are 
discovered, featu re select ion is u se-
fu l to con rm the chosen m odel—to 
see if the m ach ine picks the featu res 
expected.

RESULTS
We u sed the fou r classi ers to deter-
m ine if the genot ype-posit ive LQTS 
pat ien ts in  ou r database h ad su ered 
or wou ld su er from  any sym ptom s. 
Figu re 3 illu st rates how the per for-
m ance of each  classi er ch an ges as 
we provided m ore t ra in in g sam ples. 
We con gu red the k-nearest neigh-

bors classi er to weigh t sam ples by 
d istance rather th an  u n iform ly and 
com posed the ran dom  forest with  100 
t rees rather th an  the defau lt of 10. We 
set both  random  forest and the t wo 
SVMs to u se ba lanced class weigh ts. 
All other param eters were the scik it-
learn  defau lt s. Each  of the classi ers’ 
inpu t sam ples con ta ined 48 va lues.

We com puted ru nt im e resu lts on 
an In tel i7-5930K and a lways u sed 
30 percen t of the 434 sam ples in  the 
fu ll dataset (t rain ing plu s test ing) for 

test ing. However, we conducted t rain-
ing over increasingly larger subsets of 
the rem ain ing 70 percent to determ ine 
how m any sam ples wou ld produce 
opt im al resu lts.

Average and minimum accuracy
Figu re 3a shows average accuracy—
the accu racies that we cou ld expect 
from each classi er on the basis of 
50 random t rain ing-data select ion s. 
Figu re 3b shows m in imu m accu racy 
over the 50 t r ia ls—assu m ing we chose 
t rain ing data poorly, how well cou ld 
each a lgorith m do? We fou nd th at in  
th is worst-case scen ario, m ore than  
100 t rain ing sam ples cou ld be requ ired 
sim ply to break even—to exceed 52 
percent (the guessing line). The h igh-
est scores, both  m in imum  and aver-
age, cam e from random forest and the 
RBF SVM, wh ich ach ieved 60 to 65 per-
cent accu racy even with  a poor selec-

t ion of data and fewer th an 100 t rain-
ing sam ples. The best classi er in  ou r 
tests, the RBF SVM, averaged about 70 
percen t accu racy.

Obviously, it is not desirable for the 
m ach ine to m ake bad classi cat ion s. 
However, relat ively low accuracy is 
m an ageable if we know when the 
com puter was un su re of a resu lt. We 
therefore tested the m ach ine’s aver-
age con dence in  its respon ses. When 
the com puter was incorrect , its aver-
age con dence was around 64 to 69 

percent with  the best classi ers, RBF 
SVM and random forest. When the 
com puter was correct , its con dence 
was h igher—arou nd 68 to 74 percen t. 
Th is test showed us the possibilit y of 
set t ing a th reshold, below wh ich the 
decision-suppor t system cou ld repor t 
“inconclusive” rather th an m arking a 
pat ien t as h aving a h igh or low r isk.

Scalability
Figu res 3c an d 3d show t he resu lt s of 
m easu r in g t h e r u n t im e of t he t ra in -
in g an d classi cat ion  st ages, wh ich 
we u sed to est im ate each  classi er ’s 
sca labilit y. Ru n t im e was not a prob-
lem  with  t h is par t icu la r dataset , bu t 
it  cou ld be a lim it at ion  in  ot her st ud-
ies. Although  t he en sem ble classi-

ers (AdaBoost an d random  forest) 
took lon ger th an  the ot hers in  bot h  
st ages, add in g t ra in in g sam ples 
barely a ected t heir r u n t im es. As we 
expected ,  k-nearest neigh bors h ad 
essen t ia lly zero t ra in in g t im e, bu t 
classi cat ion  t im e increased wit h  
t he nu m ber of sam ples becau se the 
a lgor it h m  h ad to com pute d ist ances 
to ever y poin t in  t he t ra in in g set . In  
fact , at a rou n d 240  t ra in in g sam ples, 
classi cat ion  act u a lly becam e slower 
t h an  with  AdaBoost . Becau se the t wo 
en sem ble m et hods h ave ver y at r u n-
t im es, SVM will a lso becom e slower 
t h an  even  ran dom  forest , given  
enou gh  t ra in in g sam ples.

All the classi ers except k-nearest 
neighbors (wh ich does not really h ave 
a t rain ing stage) cou ld not incorpo-
rate new data after t rain ing was com-
plete. When a database grows, classi-

ers must be en t irely ret rained or the 
process of adding sam ples m ust u se 
non tr ivia l tech n iques. The abilit y to 
add one or m ore t rain ing exam ples 
to a m odel without com plete ret rain-
ing, refer red to as on line ML, is an 

IN FEATURE SELECTION, OUR AIM   
WAS TO REDUCE INPUT DIMENSIONALITY 

WHILE MINIMIZING RELEVANT 
INFORMATION LOSS.
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im por tan t scalabilit y featu re. Con-
sequen t ly, we tested the percept ron 
on line a lgor ith m 14 and fou nd that it 
ach ieved 68 percen t accu racy, a level 
com parable to that of random forest.

E ects of feature reduction
We next invest igated the im pact of 
provid ing classi ers with  QTc a lone 
in stead of QT and RR separately, wh ich 
reduced the num ber of featu res from 
48 to 24. Because QTc is designed to 
con tain  the LQTS-relevan t in form a-
t ion from QT and RR, we expected to 
see im proved ru nt imes without lower 
accu racy. However, we found that 
accu racy decreased for random forest 
and AdaBoost (both  of wh ich are based 
on decision t rees) as did the learn ing 
rate (m ore sam ples were requ ired to 
reach peak perform ance). The featu re 
reduct ion did not hu r t RBF SVM’s per-
form ance, wh ich con sisten t ly yielded 
70 percent accu racy when provided 
with  enough t rain ing sam ples.

AdaBoost and random forest saw no 
im provem ent in  run t im e with  fewer 
featu res. Predictably, k-nearest neigh-
bors’ classi cat ion s were faster, and 
a ll SVM run t im es im proved. Because 
of these resu lts, we revisited ou r fea-
tu re choice, at tem pt ing to n arrow the 
list as much as possible.

Searching for better features
Ou r u se of QT, RR, and QTc was based 
on  knowing wh at physician s m ea-
su re in  pract ice. However, we wan ted 
to be su re th at we d id not overlook 
any other u sefu l card iac featu res, so 
we decided to eva lu ate 23 featu res at 
ever y hou r of t he day—a tota l of 552 
m easu rem en ts th at included QT, RR, 
QRS, ST segm en t du rat ion  and ele-
vat ion , QTp, JT, JTp, TpTe, an d T-wave 
du rat ion  and am plitude. Addit ion-
a lly, we u sed severa l featu res from 

each  pat ien t ’s EHR: gender, age, LQT 
t ype (1 or 2), m utat ion  t ype, and m uta-
t ion  locat ion .

Because we h ad on ly 434 t rain ing 
sam ples, we expected to have to reduce 
the new featu re set’s d imen sion al-
it y to m it igate over t t ing. Our aim 
was to reduce input d im en sion ality 
wh ile m in im izing in form at ion loss, 
wh ich both the pr incipal com ponen t 
an alysis (PCA) and the χ2 method sat-
isfy. PCA projects the data to a lower 
dim en sion al space, wh ile χ2 selects 
the stat ist ica lly best featu res. We m ea-
su red classi er accu racy varying the 
nu m ber of preserved featu res from 
1 to 512. Su rprisingly, both  featu re 
select ion m ethods a llowed the clas-
si ers to ach ieve 70 percent accu racy 
with  on ly one featu re or at t r ibute. 
The m ost im por tan t featu res seem ed 
to be QT-like m easu rem ents taken in  
the even ing, where “QT-like” m ean s 
QT, JT, QTp, JTp, or version s of these 
corrected for hear t rate. Using the top 
20 featu res with  the random forest 
classi er yielded 72 percent accu racy 
(69 percen t sen sit ivity and 75 percent 
speci city).

Figu re 4 is a h istogram of the 
t im es of day in  wh ich the top 25 and 
top 100 featu res appeared. As the g-
u re shows, all the top 25 featu res are 
evident around 5 pm  to 6 pm , wh ich 
im plies th at perhaps fat igue at the end 
of the workday is u n m asking cardiac 
issues. Expanding the search to the 
top 100 featu res begin s to reveal other 
im por tan t t im es. One is rst th ing 
in  the m orn ing (6 am to 7 am), wh ich 
is another st ressfu l t im e of day.15 
Another is late n ight (1 am to 2 am), 
wh ich m akes sen se for the LQT2 sub-
set of pat ien ts who tend to show m ore 
QTc prolongat ion du r ing sleep.13 Also 
im por tan t is the lack of h igh ly ran ked 
featu res arou nd 8 am to 11 am , wh ich 
im plies that a clin ical checkup in  the 
m orn ing m ight not be su cien t for 
the physician to accu rately assess a 
pat ien t’s r isk.

STUDY IMPLICATIONS
Ou r st udy h ad severa l im plicat ion s 
for fu t u re an a lyses, includ in g t he 
e ect s of bet a blockers, gen der in u-
ence on  classi cat ion , an d m easu re-
m en t t ype.
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best times to detect cardiac issues for this patient group.
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Beta blocker e ects
In  one of ou r exper im ents, we fou nd 
th at separat ing QTc in to QT and RR 
im proved accu racy. However, m any 
h igh-r isk LQTS pat ien ts are on  beta 
blockers—drugs prescr ibed to slow 
the hear t rate—so it was possible th at 
classi ers in  th at exper im ent were 
actu ally react ing to the increased RR 

th at is ch aracter ist ic of beta blockers, 
not to any novel pat tern  we h ad hoped 
to nd. In  par t icu lar, beta blockers 
m igh t expla in  why the classi ers 
based on  decision  t rees (AdaBoost 
and random forest) h ad h igher accu-
racy when hear t rate was available. To 
determ ine if th is was the case, we con-
ducted th ree eva lu at ion s.

The rst was to t ra in  the clas-
si ers on  on ly beta blockers (BBs) 
or non-BB pat ien t s an d t hen  check 
accu racy. When  t he classi ers were 
t ra ined on  on ly BB pat ien t s, overa ll 
accu racy rem ained at approxim ately 
70  percen t . Accu racy wit h in  t he BB 
group increased to approxim ately 
90  percen t , bu t accu racy in  t he 
non-BB group fell to approxim ately 
60  percen t . When  we t ra ined t he 
classi er on  on ly t he non-BB group, 
we obser ved t he opposite resu lt s. 
Although  90  percen t accu racy is a 
m arked im provem en t , t he “guessin g” 
line is h igher in  these subgroups: 
67 percen t of non-BB pat ien t s h ad 
no sym ptom s, an d 62 percen t of BB 

pat ien t s h ad sym ptom s. When  com -
bined , t he line was 52 percen t .

Our second experim ent was to t rain  
the classi er on both  groups as before, 
but to test the accu racy again st each 
group separately. Resu lts showed lit t le 
d i erence: classi cat ion of on ly BB or 
on ly non-BB pat ien ts rem ained at 66 to 
68 percent accu racy.

Fin ally, in  ou r exper im ent that u sed 
on ly QTc as input , we were not (ide-
a lly) provid ing any hear t-rate in for-
m at ion to the classi er. The classi er 
needed m ore t rain in g sam ples to reach 
peak accu racy, but th at peak was st ill 
arou nd 70 percen t.

We concluded that the presence of 
BBs does not a ect overall accu racy, 
but classi ers are m ore accu rate when 
the groups are separated.

Gender
We expected gender to be a featu re of 
sign i cant impor tance in  ML classi -
cat ion , as gender di erences are known 
to in uence m any coron ary hear t d is-
eases,16 and m ales and fem ales have 
dist inct average QTc values and clin i-
cal prolongat ion th resholds. However, 
featu re select ion elim inated gender 
(along with age and mutat ion in for-
m at ion) as very in sign i cant relat ive 
to m ost ECG measu rements. We con-

rmed th is by run n ing RBF SVM and 
random forest with  gender as an input, 
and found no di erence in  resu lts and 

vir tually no weight placed on that fea-
tu re. It will be in terest ing to see under 
what condit ion s gender or the other 
stat ic inputs become sign i cant.

Measurement type
For ou r study, the featu re of in terest 
(QTc) h as ch aracter ist ics th at t well 
with  hou rly average m easu rem ents 
because QTC ch anges slowly and is 
corrected for hear t rate. However, for 
other applicat ion s, even  the exten-
sive featu re set we tested m ight not be 
enough . Hear t rate, for exam ple, can 
vary great ly du ring one hour. Perh aps 
a di eren t measu re such as hear t rate 
var iabilit y wou ld be m ore su itable. 
Futu re an alyses m igh t even  include 
m ore exot ic m easu rem ents, such as 
“ST elevat ion at 60  m s after J poin t 
du r ing h igh hear t rate” or “percen tage 
of beats that T wave is inver ted.”

We h ave presented a work ow 
and a conceptual ML-based 
system  for health  m on itor-

ing  th at aim s to an alyze the ECGs of 
pat ien ts with  an LQTS genet ic d isorder 
and to ident ify pat ien ts with  increased 
r isk of adverse card iac even ts. The 
envisioned system will provide a per-
son alized assessm ent of each pat ien t 
by con sidering a com bin at ion of cr it i-
cal m arkers.

The resu lt s in  Figu re 3 provide 
in sigh t s in to wh ich  classi er works 
best  u n der con st ra in t s such  as ava il-
able t ra in in g data or com putat ion a l 
power. RBF SVM or ran dom  forest 
will yield t he h ighest accu racy. RBF 
SVM is probably t he bet ter choice 
for exper im en t s wit h  relat ively few 
t ra in in g sam ples, bu t ran dom  for-
est ’s faster r u n t im e will be prefer-
able when  t ra in in g data grows to 
t hou san ds of sam ples. As r u n t im e 

THE ML SYSTEM WE ENVISION WILL 
PROVIDE A PERSONALIZED ASSESSMENT 

OF EACH PATIENT BASED ON A 
COMBINATION OF CRITICAL MARKERS. 
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becom es m ore of a con cern , featu re 
select ion  get s m ore im por t an t .

In  Figu re 3a, a ll classi ers seem 
to be close to reach ing a horizon ta l 
asym ptote, m ean ing that their perfor-
m ance will not im prove sim ply by add-
ing m ore t rain ing sam ples. In stead, 
their inputs and param eters will need 
to be opt im ized. In  previous work, we 
found th at t im e of day was im por tan t 
in  classifying pat ien ts as h aving the 
LQT1 or LQT2 genotype.13,17 Both types 
show QT prolongat ion , but du r ing dif-
feren t act ivit ies and di eren t t im es of 
day. Th is nd ing is in  large par t why 
we st ructu red ou r inputs as hou rly 
data poin ts in  the study descr ibed. The 
d im en sion s a lso reduce well in  th is 
st ructu re, as u sually on ly a few hou rs 
du ring sleep are enough to di eren t i-
ate LQTS types. However, other input 
st ructu res and m easu rem ents shou ld 
be invest igated. In  the select ion of 
appropriate input featu res, the physi-
cian’s knowledge and in tu it ion rem ain 
cr it ical.

The an notat ion a lgorith m we used 
h ad som e t rouble with  noisy or abnor-
m al ECGs; im proved accu racy m ight 
requ ire cleaner inputs and m ore accu-
rate an notat ion s. Addit ion ally, we 
cou ld con st ruct m ore com plex fea-
tu res such as T-wave sym metry m ea-
su rem ents. Another possible approach 
is the u se of a vot ing classi er, wh ich 
at tem pts to aggregate the predict ion s 
of several other classi ers to reach a 
bet ter resu lt. However, ou r experi-
ence suggests th at a vot ing classi er 
will be on ly sligh t ly m ore accu rate 
th an the best individual classi er. 
Fin ally, a com plete set of exper im ents 
will requ ire t r ying other classi cat ion 
m ethods such as clu ster ing and ar t i -
cia l neu ral networks.

The steps we used can be general-
ized to other types of m edical data and 

illnesses. We expect th at the re ne-
m ent of ou r m ethod and the growth 
of EHR databases will great ly im prove 
the quality of care for pat ien ts with  a 
var iety of d isorders. 

ACKNOWLEDGMENTS
We th an k Meh m et Aktas and Jean-

Ph ilippe Couderc from the Un iversity of 

Rochester’s Depar tm ent of Medicine for 

m ot ivat ing th is study and provid ing gu id-

ance about it s clin ica l applicat ion s. Th is  

work was suppor ted in  par t by Nat ion al 

Science Fou ndat ion  gran t CNS-1239423.

REFERENCES
1. T. Lorberbau m et a l., “An In tegrat ive 

Data Science Pipeline to Iden t ify 

Novel Drug In teract ion s Th at Pro-

long the QT in ter va l,” Drug Safety, 

vol. 39, no. 5, 2016, pp. 433–441.

2. M. Hassan a lieragh  et a l., “Hea lth  

Mon itor ing and Man agem ent Using 

In ternet-of-Th ings (IoT) Sen sing with  

Cloud-Based Processing: Oppor tu-

n it ies and Ch allenges,” Proc. IEEE 

Int’l Conf. Services Comput ing (SCC 15), 

2015, pp. 285–292.

3. D. Son et a l., “Mu lt ifu nct ion a l 

Wearable Devices for Diagnosis and 

ABOUT THE AUTHORS

SHUROUQ HIJAZI is a technology consultant at Ernst & Young. While conduct-

ing the research reported in this article, she was a research assistant in the 

machine-learning (ML) laboratory at the University of Rochester. Her research 

interests include ML techniques, cybersecurity, computer networks, the Inter-

net of Things (IoT), and virtualization. Hijazi received a BS in electrical and com-

puter engineering from the University of Rochester. She is a student member of 

IEEE. Contact her at shijazi@u.rochester.edu.

ALEX PAGE is a postdoctoral associate in the Heart Research Follow-up Program 

at the University of Rochester Medical Center. While conducting the research 

reported in this article, he was a PhD student in electrical engineering at the Uni-

versity of Rochester. His research interests include computer systems for analyz-

ing medical data, such as databases, GPU acceleration, and ML techniques. Page 

received a PhD in electrical engineering from the University of Rochester. He is a 

student member of IEEE. Contact him at alex.page@rochester.edu.

BURAK KANTARCI is an assistant professor in the School of Electrical Engi-

neering and Computer Science at the University of Ottawa and a courtesy 

assistant professor in the Electrical and Computer Engineering Department 

at Clarkson University. His research interests include the IoT, big data in the 

network, crowdsensing and social networks, cloud networking, and digital 

health. Kantarci received a PhD in computer engineering from Istanbul Tech-

nical University. He is an editor of IEEE Communications Surveys and Tutori-

als, a Senior Member of IEEE, and a member of ACM. Contact him at burak 

.kantarci@uottawa.ca.

TOLGA SOYATA an associate professor in the Department of Electrical and 

Computer Engineering at SUNY Albany. His research interests include cyber-

physical systems, digital health, and GPU-based high-performance comput-

ing. Soyata received a PhD in electrical and computer engineering from the 

University of Rochester. He is a Senior Member of IEEE and ACM. Contact him 

at tsoyata@albany.edu.



48 CO M PU TER WWW.COMPUT ER.ORG/ COMPUT ER

SMART HEALTH AND WELL BEING

Therapy of Movem ent Disorders,” 

Nature Nanotechnology, vol. , , 

pp. – .

.  F. Pedregosa et a l., “Scik it-Learn: 

Mach ine Learn ing in  Python ,” J. 

Machine Learning Research, vol. , 

, pp. – .

.  “Su m m ar y of HIPAA Pr ivacy Ru le,” 

US Depar tm ent of Hea lth  and 

Hu m an Ser vices, ; www.h h s

.gov/ h ipaa/ for-profession a ls/ pr ivacy

/ laws-regu lat ion s.

.  E.C. Larson  et a l., “Spirosm ar t: Using 

a Microphone to Measu re Lu n g Fu nc-

t ion  on  a Mobile Phone,” Proc. ACM 

Conf. Ubiquitous Comput ing (UbiCom p 

), , pp. – .

.  A. Page et a l., “An Open Sou rce ECG 

Clock Generator for Visua lizat ion  

of Lon g-Term Cardiac Mon itor ing 

Data,” IEEE Access, vol. , ,  

pp. – .

.  C.E. Ch iang, “Congen ita l and 

Acqu ired Long QT Syndrom e: Cu r-

ren t Concepts and Man agem ent ,” 

Cardiology Rev., vol. , no. , , 

pp. – . 

. Y. Chesnokov, D. Neru kh , and R. 

Glen , “Individually Adaptable Auto-

m at ic QT Detector,” Proc. IEEE Com-

puters in Cardiology (CinC ), , 

pp. – .

.  A. Dem sk i an d M.L. Sor ia , “Ecg-Kit: 

A Mat lab Toolbox for Card iovas-

cu la r Sign a l Processin g,” J. Open 

Research Software, vol. , n o. , ; 

open research soft ware.m etajn l

.com / ar t icles/ . / jors. .

.  L.S. Fr ider icia , “The Du rat ion of 

Systole in  an  Elect rocard iogram in  

Norm al Hu m an s and in  Pat ien t s 

with  Hear t Disease,“ vol. , , 

pp. –  (in  Germ an).

.  J. Couderc, “The Telem et r ic and 

Holter ECG Warehou se In it iat ive 

(THEW): A Data Repositor y for the 

Design , Im plem entat ion  and Valida-

t ion of ECG-Related Tech nologies,” 

Proc. IEEE Int’l Conf. Eng. Medicine 

and Biology Soc. (EMBC ), , pp. 

– .

.  A. Page et a l., “QT Clock to Im prove 

Detect ion  of QT Prolongat ion in  

Long QT Syndrom e Pat ien ts,” Heart 

Rhythm, vol. , no. , , pp. 

– .

.  F. Rosen blat t , “The Percept ron : A 

Probabilist ic Model for In form at ion 

Storage and Organ izat ion  in  the 

Brain .” Psychological Rev., vol. , no. 

, , pp. – .

.  W.B. Wh ite, “Cardiovascu lar Risk and 

Therapeutic In tervent ion for the Early 

Morn ing Su rge in Blood Pressu re and 

Hear t Rate,” Blood Pressure Monitoring, 

vol. , no. , , pp. – .

.  A. Maas and Y. Appelm an , “Gender 

Di  erences in  Coron ary Hear t Dis-

ease,” Netherlands Heart J., vol. , no. 

, , pp. – .

.  A. Page et a l., “Research Direct ion s 

in  Cloud-Based Decision  Suppor t 

System s for Health  Mon itor ing 

Using In ternet-of-Th ings Driven Data 

Acqu isit ion ,” Int’l J. Services Comput-

ing, vol. , no. , , pp. – . 

Read your subscriptions 
through the myCS 
publications portal at 

ht tp://mycs.computer.org.

2017 B. Ramakrishna Rau Award
Ca l l fo r No m in a t io n s

Honoring contributions to the computer microarchitecture Ʈeld

Ne w De a d l in e : 1 Ma y 2017

Established in memory of Dr. B. (Bob) Ramakrishna Rau, the award
recognizes his dis tinguished career in promoting and expanding the
use of innovative computer microarchitecture techniques , including
his innovation in complier technology, his leadership in academic
and industrial computer architecture, and his extremely high personal
and ethical s tandards .

WHO IS ELIGIBLE? : The candidate will have made an outs tanding
innovative contribution or contributions to microarchitecture, use of novel
microarchitectural techniques or compiler/architecture interfacing. It is hoped, but not
required, that the winner will have also contributed to the computer microarchitecture
community through teaching, mentoring, or community service.

AWARD: CertiƮcate and a $2,000 honorarium.

PRESENTATION: Annually presented at the ACM/IEEE International Symposium on
Microarchitecture

NOMINATION SUBMISSION: This award requires 3 endorsements . Nominations are
being accepted electronically: www.computer.org /web/awards /rau

CONTACT US: Send any award-related ques tions to awards@computer.org
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