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Abstract

This study compares the ability to preserve information

and reduce noise contaminants on the ECG for five wavelet

filters and three IIR filters. Two 3-lead Holter ECGs were

used. White Gaussian Noise was added to the first ECG

in increments of 10% coverage. The second ECG con-

tained alternating muscle transients and noise-free seg-

ments. Computation times and SNR improvements for

different noise coverages were calculated and compared.

RMS errors were calculated from noise-free segments on

the ECG with transient muscle noise. Wavelet filters im-

proved SNR more than IIR filters when the signal coverage

was more than 50% noise. In contrast, the computation

times were shorter for IIR filters (6 s) than for wavelet fil-

ters (88 s). On the ECG with transient muscle noise there

was a trade-off in performance between wavelet and IIR

filtering. In a clinical setting where the amount of noise

is unknown, using IIR filters appears to be preferred for

consistent performance.

1. Introduction

The electrocardiogram (ECG) is routinely used to diag-

nose cardiac patients. However, noise contamination of

the ECG such as baseline wander, power line interference

and muscle activities can pollute the ECG and reduce the

clinical value of an ECG tracing. Consequently, filtering

of the ECG is a necessary pre-processing step to ensure

a reduction of these polluting components while provid-

ing an appropriate conservation of the signal information

relevant for clinicians. This task remains a challenge of

modern quantitative electrocardiography and while Amer-

ican Heart Association (AHA) has defined standard filter-

ing requirements for clinical ECG equipment [1], there is a

continuous incentive to develop better methods to improve

signal-to-noise ratio of the ECG.

Baseline wander and power-line noise both have con-

fined power spectra making the use of narrowband linear

time-invariant filters ideal. However, muscle interferences

generate non-stationary noise with spectral overlap with

Figure 1. A noise free interval was identified in a 24-hour

Holter recording.

the normal ECG waves, thus complicating the de-noising

task [2]. Wavelet transformations have been proposed as a

filtering option to remove muscle interferences [3–5], but

these studies have been limited to one or two wavelet func-

tion families. In this study, we investigate five different

families of wavelet filtering techniques using threshold-

based methods reported by Donoho and Johnstone [6]. We

evaluate the wavelet functions and the thresholding defi-

nitions on ECGs with real and simulated noise. Impor-

tantly, the computation time was also considered since this

is an important factor when applying the filters to long-

term ECG recordings, e.g. 24-hour Holter.

2. Methods

2.1. ECG data

A 24-hour Holter recording was randomly selected from

the Telemetric and Holter ECG Warehouse (THEW) from

the Healthy database (E-HOL-3-201-003) [7]. A recording

with a sample rate of 200 Hz, and was recorded using 3

pseudo-orthogonal leads. Lead X was used.

A signal with simulated noise was created by visually

identifying a noise-free interval (21 seconds), and adding

simulated white noise. The interval was selected to be-

gin and end between cardiac beats (between the T- and P-

wave) as illustrated in figure 1. The average heart rate in

this interval was 88 beats per minute. The noise-free in-
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Figure 2. Part of the recording with transient muscle noise.

Figure 3. Addition of non-stationary white gaussian noise

gives rise to two segments: non-noise and noise. In this

case the coverage is 50%, and the SNR was 15 dB.

terval was repeated to achieve a length equal to 24-hour

Holter recordings. This length was chosen to estimate

the computation time and get a consistent estimate of the

added noise.

In another recording an interval with transient muscle

activity was visually identified (140 seconds). Part of this

signal is illustrated in figure 2. The average heart rate was

78 beats per minute. This interval was used to evaluate the

filters on a recording with real transient muscle activity.

2.2. Performance measures

Two segments were defined in a recording with simu-

lated muscle noise components: a non-noise and noise seg-

ment, as illustrated in figure 3.

In the noise segment white Gaussian noise with con-

stant mean and variance was added and the signal to noise

(SNR) improvement after filtering was calculated as:

SNR = 10log10

N
∑

n=0

x[n]2

N
∑

n=0

(xdn[n]− x[n])2

where x[n] is the simulated signal before noise is added

and xdn[n] is the filtered signal with added noise. The ini-

tial SNR in the noise segment was 15 dB. The length of the

noise segment was varied to simulate different amounts of

noise. By changing the length of the noise segment, the

noise coverage of the simulated recording was changed.

Coverages were varied between 10 and 100% in incre-

ments of 10% of the total length of the simulated record-

ing.

The root mean square error (RMSE) was calculated in

the non-noise segment, to quantify how well the informa-

tion of the signal was preserved. The RMSE was defined

by:

RMSE =

√

√

√

√

N
∑

n=0

(xdn[n]− x[n])2

N

For each amount of coverage, the ECG with simulated

noise was filtered using the Symmlet 8 (used in illustra-

tions), Daubechies 4, Coiflets 4, Bior 3.5 and Haar mother

wavelets. The soft and hard thresholding methods were

used as well as the thresholding method proposed by Su

and Zhao [3], which combines the soft and hard thresh-

olding methods. For each thresholding method the dis-

crete wavelet transform (DWT) and the stationary wavelet

transform (SWT) were used. The decomposition level of

the wavelet transform was kept constant at 6 (100 to 1.56

Hz) to cover the frequency spectrum of the ECG. Then we

evaluated how the choice of mother wavelet affected the

SNR and RMSE, and separately the effect of thresholding

method and wavelet transformation. As a reference, the

performance of the wavelet filters was compared with low-

pass bidirectional IIR filters having cutoff frequencies of

35, 45 and 55 Hz and order 5.

The computation time on the 24-hour Holter recording

was calculated on an Intel Core2 Duo T9600, 2.80 GHz,

6 MB cache with 4GB DDR3 1067 MHz RAM running

MATLAB R2009b (Mathworks Inc, Natick, MA) with the

signal processing and wavelet toolbox.

Ideally, the output of the optimal filter has a perfect

noise removal, no distortion and low computation time.

This criterion was used to select one wavelet filter and one

IIR filter to be used on the ECG with transient muscle ac-

tivity. For this signal the RMSE of the non-noise and noise

segment were calculated using the selected wavelet and IIR

filters.

3. Results

The computation time on a 24-hour Holter recording

was 6 seconds for the IIR filters, 88 seconds using the

DWT and 272 seconds using the SWT.
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Figure 4. Panel A: Improvement in SNR as a function

of noise coverage. Panel B: ECG beat before and after

filtering with Symmlet 8 at 90% coverage. Panel C: The

same beat at a coverage of 20%.

The panel A of figure 4 shows how the choice of IIR and

wavelet filters can affect the improvement in SNR across

noise coverage. Thresholding of wavelet coefficients was

done using the method proposed by Su and Zhao [3].

The SNR improvements for IIR filters were constant

across noise coverage. An IIR filter with a cutoff frequency

of 45 Hz had the best SNR improvement (3.1 dB). The per-

formance of the wavelet filters depended on the noise cov-

erage. At a low coverage the wavelet filters: Daubechies 4,

Symmlet 8, Coiflets 4 and Bior 3.5 were outperformed (1

dB at 10%) by the IIR filters. At higher coverages (above

50%) these wavelet filters outperformed the IIR filters (2.5

dB at 100%). The Haar wavelet performed better than

the IIR filters regardless of coverage but Haar was outper-

formed by the other wavelet filters when noise coverage

exceeded 60%. In figure 4, beats extracted from the noise

segment at 90% (panel B) and 20% (panel C) coverages are

shown. At low coverage the filter did not remove the added

noise. However, as the coverage increased the wavelet fil-

ter removed the noise.

Figure 5, panel A, shows how the choice of wavelet af-

fects RMSE across coverage.

The IIR filter with a cutoff frequency of 55 Hz had the

lowest RMSE of 1.2. The RMSE of the Daubechies 4,

Symmlet 8, Coiflets 4 and Bior 3.5 wavelets had linear

trends (RMSE ≈ 0.85 at 10% and RMSE ≈ 2.25 at 90%).

The Haar wavelet had a constant RMSE up to 40% cover-

age after which a linear increase to 4 was seen at 90% cov-

erage. As illustrated by the Symmlet 8 wavelet in figure 5,

filtering preserved the signal information at 20% coverage,

while the PR and ST-segment were distorted at 90% cov-

erage.

Figure 6 shows how the choice of thresholding tech-

niques and wavelet transformations affected the improve-

ment in SNR.

Thresholding using the DWT and SWT had similar per-

formance trends across coverages but the SWT gave bet-

Figure 5. Panel A: RMSE as a function of noise cover-

age. Panel B: An ECG beat before and after filtering with

Symmlet 8 at 90% coverage. Panel C: The same beat at a

coverage of 20%.

Figure 6. Improvements in SNR for different coverages

and thresholding methods.

Figure 7. RMSE in the non-noise segment for different

coverages and thresholding methods.

ter SNR improvements compared to the DWT, figure 6.

There was practically no difference between hard thresh-

olding and the method proposed by Su and Zhao [3]. Soft

thresholding performed best between 10 and 50% cover-

age. Above 50% coverage, the performance for soft thresh-

olding started to decrease.

Figure 7 supports these findings as the RMSE of the soft

thresholding increased more rapidly when reaching about

50% noise coverage. The DWT and SWT again showed
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similar trends with the DWT having the largest RMSE.

The ECG with alternating muscle transients was filtered

using the IIR filter with a cutoff frequency of 55 Hz, and

using the Coiflet 2 wavelet (SWT) with a hard threshold.

These two were selected as they were found to be associ-

ated the best performance. The coverage of the recording

was 45.3%. The RMSE of the noise and non-noise seg-

ments for the IIR filter were 1.17 and 0.72 respectively,

and 1.46 and 0.93 for the wavelet filtering.

4. Discussion and conclusions

Filtering is an important step in the processing of the

surface ECG signal. This study investigated some of the

different factors influencing threshold based wavelet de-

noising of the ECG and compared the performance of these

filters with IIR filters.

We demonstrated that the performance of wavelet fil-

tering is affected by how much of the signal is covered by

noise. At low coverage, the IIR filters removed noise better

than the wavelet filters. On the other hand at high coverage

the wavelet filters have the best noise reduction because the

threshold estimation improves. However, it is important to

note that there is a trade-off between preservation of signal

information and noise reduction for the wavelet filters. If a

wavelet filter has a high noise reduction it will also have a

reduced ability to preserve the signal information.

If wavelet filtering is used it is also important to choose

the proper thresholding technique and wavelet transforma-

tion. Our results suggest that the hard thresholding method

and the method proposed by Su and Zhao [3] both can be

used as they have similar filter performances. Soft thresh-

olding should not be used, if the coverage of the signal

exceeds about 70%. In this case the estimated threshold

becomes too large resulting in a significant shrinkage of

the wavelet coefficients, which in turn results in distortion

of the ECG morphology. However, for coverage values

below 50% the soft thresholding performs better than the

hard thresholding method and the method proposed by Su

and Zhao [3]. The latter method combines hard and soft

thresholding methods but our results indicate that this was

not optimal either. It is possible that the combination fac-

tor which is used in this technique to combine the hard and

soft thresholding methods was not optimal. This value was

set to 15 as suggested by Su and Zhao [3].

Our results also indicated a considerable computational

time difference between the SWT, DWT and IIR filters.

This difference could be partially attributed to the algo-

rithm implementation. The large difference between the

wavelet transforms and the IIR filters could be reduced by

another implementation e.g. in C/C++. However, as the

SWT is a redundant transformation the computation will

always be considerable longer than for the DWT or IIR fil-

tering. Finally, our results also showed that the choice of
mother wavelet does not have a critical effect on the per-

formance of the wavelet filtering.

The results of RMSE calculations on the ECG with tran-

sient muscle activity revealed that the wavelet filtering had

a slightly better performance in the noise segments com-

pared to the IIR filters. This result would appear to favor

wavelet filters but wavelet filtering also distorted the clean

part of the signal more than IIR filters so the choice of

filter depends on the setting. Noise coverage appears to

be important for the performance of wavelet filters and in

a 24-hour Holter recording, muscle noise might only be

present in a small fraction of a recording. In this case an

IIR performs better than a wavelet filter. In addition, the

IIR filter is computationally more efficient, and we believe

that IIR filters are a good option for general purpose ECG

filtering.
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