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Abstract. In the electrocardiogram, adaptation of the QT interval to variations in

heart rate is not instantaneous. Quantification of this hysteresis phenomenon relies

on mathematical models describing the relation between the RR and QT time series.

These models reproduce hysteresis through an effective RR interval computed as a

linear combination of the history of past RR intervals. This filter depends on a time

constant parameter that may be used as biomarker. The most common hysteresis

model is based on an autoregressive filter with an impulse response that decreases

exponentially with the beat number (lag-based model). Recognizing that the QT

time series is unevenly spaced, we propose two exponential moving average filters

(time-based models) to define the effective RR interval: one with an impulse response

that decreases exponentially with time in seconds, and one with a step response that

relaxes exponentially with time in seconds. These two filters are neither linear nor

time-invariant. Recurrence formulas are derived to enable efficient implementation.

Application to clinical signals recorded during tilt table test, exercise and 24h Holter

demonstrates that the three models perform similarly in terms of goodness-of-fit. When

comparing the hysteresis time constant in two conditions with different heart rates,

however, the time-based models are shown to reduce the bias on the hysteresis time

constant caused by heart rate acceleration and deceleration.

1. Introduction

The QT interval of the electrocardiogram (ECG) is a descriptor of ventricular

repolarization. The adaptation of the QT interval in response to a sudden change

in heart rate is not instantaneous. It occurs with a delay, thus creating a hysteresis

phenomenon (Lau et al. 1988, Malik et al. 2008). QT hysteresis is believed to provide

potential biomarkers to predict arrhythmic mortality in survivors of acute myocardial

infarction (Pueyo et al. 2004), the risk of torsade de pointes (Trost 2008), and the
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Lag-based and time-based QT hysteresis models 2

occurrence of ventricular tachycardia (Chen and Trayanova 2012, Chen et al. 2013)

and myocardial ischemia (Lauer et al. 2006). Differences in QT hysteresis have been

observed in relation to the long QT syndrome (Krahn et al. 1997, Krahn et al. 2002, Gao

et al. 2007, Wong et al. 2010, Chattha et al. 2010), coronary artery disease (Zhang

et al. 2014) and hypertension (Halamek et al. 2010). These studies often used treadmill

or ergometer exercise tests to induce changes in heart rate. QT hysteresis measures may

be combined with standard QT variability indices (Berger 2003, Dobson et al. 2013).

Quantifiers of QT hysteresis include direct measurement of QT time course,

often during atrial pacing (Lau et al. 1988, Grom et al. 2005), differences in QT

interval between heart rate acceleration and deceleration (Krahn et al. 1997, Chauhan

et al. 2002, Lewis and Short 2006), the area of the QT-RR loop (Sarma et al. 1987, Lauer

et al. 2006, Pelchovitz et al. 2012), and, more recently, measures derived from subject-

specific modeling of QT-RR dynamics (Pueyo et al. 2003, Halamek et al. 2007,

Jacquemet et al. 2011).

Mathematical models of the relation between the RR intervals and the QT intervals

have been developed in order to define parameters describing the time constant of QT

hysteresis (Gravel et al. 2017). These models typically rely on an effective RR interval

computed as a linear combination of the history of past RR intervals (Pueyo et al. 2003).

The weights of past RR intervals decrease with time, either represented by the number

of beats (lag-based approach) or the time elapsed in seconds (time-based approach).

Accounting for QT hysteresis has been shown to reduce the variability of the corrected

QT interval (Malik et al. 2008, Jacquemet et al. 2011) and improve its accuracy in

thorough QT pharmacological studies (Malik et al. 2009a, Malik et al. 2009b, Malik

et al. 2016).

Nearly all studies so far quantified the hysteresis time constant in beats because

of its convenient link to digital filters and system identification theory (Halamek

et al. 2010, Jacquemet et al. 2011). Malik et al. (2008) compared the two approaches in

daytime recordings in normal subjects and the observed differences were small. Indeed,

as long as the RR interval distribution is unimodal, the mean RR serves as a factor

to translate the time constant in beats into seconds. In the case of a bimodal RR

distribution, however, when two distinct conditions associated with different heart rates

are included and compared, the link between lag-based and time-based approaches

becomes unclear and a time constant in seconds seems both theoretically preferable

and physiologically relevant.

This paper presents a mathematical formulation and an efficient implementation

of time-based approaches with exponentially-decaying weights. The emphasis is on the

identification of potential heart rate-dependent biases that may affect the hysteresis time

constant. In addition to theoretical analysis, the clinical application to intra-subject

comparison of QT hysteresis is evaluated.
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Lag-based and time-based QT hysteresis models 3

2. Material and methods

2.1. Data collection

ECG Holter data of a total of 139 normal subjects from three different protocols were

collected.

Eleven normal subjects underwent a tilt-table test (Hamidi et al. 1997). The

tilt-table protocol, 70 min in duration, consisted in four 10 min periods in supine

position separated by three 10 min periods in orthostatic positions at 90◦, 70◦ and

45◦ successively. Three-lead orthogonal ECG were recorded.

Sixty normal subjects underwent an exercise test comprising 10 repetitions of 4 min

of exercise followed by 4 min of recovery. Exercise intensity varied between 30% and

60% of peak VO2. Standard 12-lead ECG were recorded.

ECG signals of a thorough QT study with crossover design (database ”Thorough

QT Study #2“ E-HOL-12-0140-008) were obtained from the Telemetric and Holter ECG

Warehouse (Rochester, NY). The 24h-duration standard 12-lead ECG recorded in 68

normal subjects during placebo delivery were used.

An ECG fiducial point detector (Dubé et al. 1988) was applied to the vector

magnitude signal (root mean square of the three ECG leads) to identify the R, Q onset

and T offset markers (Jacquemet et al. 2011). The resulting RR and QT time series were

manually validated. Artifacts, signal saturation, premature ventricular contractions,

ventricular arrhythmias and noisy or unreliably detected T waves were eliminated from

the list of valid beats.

The set of valid beats was manually partitioned into two subsets associated with

faster and slower heart rates: in the tilt-test group the subsets were supine position

(heart rate deceleration) and orthostatic positions (acceleration); in the exercise group,

the subsets were exercise and recovery; in the Holter 24h group, the subsets were day

and night.

2.2. QT-RR modeling

In a sequence of N beats, the time instant of the i-th R wave is denoted by ti and the

QT interval of the i-th beat by QTi. The RR interval preceding beat i is defined as

RRi = ti − ti−1. The zero-th beat, at time t0, is used solely to define RR1. This gives

two time series RRi and QTi of length N .

A QT-RR model is described by a static QT-RR relationship and a hysteresis model

(Pueyo et al. 2004, Jacquemet et al. 2011)

QTi = fγ(RRi) + ε , (1)

where ε is the modeling error. The static QT-RR relationship is a function fγ(RR)

depending on a set of parameters γ. We will use the shifted power function

fγ(RR) = γ1 + γ2RR
γ3 (2)
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Lag-based and time-based QT hysteresis models 4

with γ = (γ1, γ2, γ3). This family of curves notably includes the Bazett’s and Fridericia’s

formulas and enables the adjustment of QT-RR curvature (Malik et al. 2012).

A hysteresis model provides a definition of the effective RR interval (RRi) as a

function of the history of preceding RR intervals (RRj, j ≤ i), following the general

linear form

RRi =

∑
j≤iwi,jRRj∑

j≤iwi,j
, (3)

where wi,j is the weight of beat j in the calculation of RRi. In the general case,

computing the RR time series requires O(N2) arithmetic operations. By restricting

wi,j for each i to L non-zero values (j = i−L+ 1, . . . , i−1, i), the number of operations

is reduced to O(NL) as in Malik et al. (2008). Since L is often of the order of 300

(Pueyo et al. 2003) and N may be as large as 100,000 (Holter 24h), it is desirable to

seek formulas that can be computed in O(N) operations (see Appendix A).

The weights are functions wi,j(τ) of a time constant τ expressing the adaptation

time for the QT interval after sudden change in heart rate. Determination of the

parameters γ and τ based on the RR and QT time series is performed by optimizing

the mean square prediction error

E2
RMS(τ, γ;V) =

1

|V|
∑
i∈V

(
QTi − fγ(RRi)

)2
. (4)

The subset V ⊂ {1, . . . , N} lists the valid beats after exclusion of artifacts, ectopic beats

and arrhythmias, and can be used for parameter optimization over a set of time segments

(e.g. exercise or recovery). |V| is the number of beats in V . The numerical techniques

we used for minimizing E2
RMS(τ, γ;V) for a given V are presented in Jacquemet et al.

(2011). These methods are comparable to the previous works of Halamek et al. (2010)

and Pueyo et al. (2004).

2.3. Exponential hysteresis models

Two exponential formulas for the weights of the hysteresis model have been proposed,

the lag-based (or interval-based) exponential model

wi,j = e−(i−j)/τb (5)

where the time constant τb is expressed in beats, and the time-based exponential model

wi,j = e−(ti−tj)/τs (6)

where the time constant τs is in seconds. Recall that wi,j is defined only for j ≤ i, so

that 0 < wi,j ≤ 1.

These time constants are related to the hysteresis parameters λl and λT defined in

Malik et al. (2008): λl = L/τb and λT = L 〈RR〉/τs where L is the window duration

in beats and 〈RR〉 is the mean RR interval over the L preceding beats. As a result,

τs/τb = 〈RR〉 λl/λT . An advantage of our formulation is that the parameters τb and τs
are not based on a fixed-length sliding window, so they do not depend on L.
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Lag-based and time-based QT hysteresis models 5

The formula (3) for the effective RR defines a filter acting on an unequally spaced

signal (ti, xi)i=1,...,N whose value at time ti is xi. Three variants of the filter were used.

Their pseudocode implementation is provided in Table 1, the mathematical justification

of the algorithms is presented in Appendix A and the derivation of their properties

is shown in Appendix B. The first-order autoregressive filter (AR1) has lag-based

exponential weights (5) and an exponential step function (which means an exponential

adaptation to a sudden change in heart rate). The exponential moving average filter

(EMA) has time-based exponential weights (6) but only an approximate exponential step

function. The equivalent EMA filter (EMAeq) is an adjustment of the AR1 algorithm

that makes it similar to EMA. It has an exact exponential step function but the decay

of its weights is only approximately exponential (and not even monotonic).

Each of the filters AR1, EMA and EMAeq defines a hysteresis model (called AR1,

EMA and EMAeq models hereafter) by applying the filter to the RR time series, i.e.

with xi+1 = ti+1− ti = RRi+1 in Table 1. The AR1 model remains a simple linear time-

invariant filter of the RR time series. In contrast, in the EMA and EMAeq models,

the weights of the filter are correlated with the values of the time series to be filtered

because c = e−RRi+1/τ in the notations of Table 1. As a result, these filters are neither

linear nor time-invariant since the weights are nonlinear functions of the RR values.

2.4. Adaptation time

Instead of time constants, time to 90% of QT adaptation (T0.9) is sometimes reported

(Gravel et al. 2017), in particular when the hysteresis model may not be exponential.

Under the assumption that QT adaptation is exponential, this measure of hysteresis

should correspond to τ log(10) ≈ 2.3 τ .

The time to β% of RR adaptation (denoted by T β) will also be calculated. As long

as the static QT-RR relation fγ is linear, T0.9 = T 0.9, i.e. the time constants of QT

adaptation and RR adaptation are the same. Otherwise, QT adaptation is non-linearly

related to RR adaptation. If a subject in condition A with initial RR interval RRA

changes to condition B with final RR interval RRB, then T0.9 = T β where

β =
f−1γ (0.1fγ(RRA) + 0.9fγ(RRB))−RRA

RRB −RRA

. (7)

If heart rate is assumed to be stable in conditions A and B and if the transition is

abrupt, the time to RR adaptation can be calculated explicitly for all three hysteresis

models from the step functions (B.2), (B.4) and (B.6) derived in Appendix B:

T β =


−τb RRB log(1− β) AR1 model

τs log
(

1 + β
1−β ·

RRB

RRA

)
EMA model

−τs log(1− β) EMAeq model

(8)

With the AR1 model, the adaptation time T β depends on the final RR interval. In a

QT-RR loop following this model, QT adaptation is faster during heart rate acceleration

(RR ↓) and slower during deceleration (RR ↑). With the EMA model, if RRA ≈ RRB,
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Lag-based and time-based QT hysteresis models 6

Inputs: (ti)i=0,...N (time series)

(xi)i=1,...N (value of the signal)

τb or τs (time constant)

Output: (x̄i)i=1,...N (filtered signal)

AR1: c := exp(−1/τb)

x̄1 := x1
for i := 1 to N − 1

x̄i+1 := (1− c)xi+1 + c x̄i
end

EMA: c := exp(−(t1 − t0)/τs)

a := x1/(1− c)
b := 1/(1− c)
x̄1 := x1
for i := 1 to N − 1

c := exp(−(ti+1 − ti)/τs)
a := xi+1 + c a

b := 1 + c b

x̄i+1 := a/b

end

EMAeq: x̄1 := x1
for i := 1 to N − 1

c := exp(−(ti+1 − ti)/τs)
x̄i+1 := (1− c)xi+1 + c x̄i

end

Table 1. Pseudocode algorithms for the three exponential filters AR1 (lag-based),

EMA (time-based; exponential weights) and EMAeq (time-based; exponential step

function). The operator := denotes assignment. For AR1, τb is in beats and for EMA

and EMAeq, τs is in seconds. In the case of the RR time series, xi+1 = ti+1 − ti.

For the EMA algorithm, if t0 is unknown, t1 − t0 may be replaced with t2 − t1 in the

initialization of c.

we still have T β = −τs log(1− β), but otherwise a correction factor must be applied to

interpret τs as an adaptation time. QT adaptation is always slower during deceleration

than acceleration, as with the AR1 model. In contrast, with the EMAeq model, the

adaptation time is the same for both heart rate acceleration and deceleration. In this

case, the subject-specific τs value is a measure of RR adaptation time.

2.5. Shift of the QT-RR relation

Time-invariant linear filters such as the AR1 model have the property that the mean

(over the whole signal) effective RR interval is equal to the mean RR interval. The EMA

and EMAeq models are neither time-invariant (unless the RR time series is constant)

nor linear (the factor c depends on RR). A difference between the mean RR and mean

effective RR may lead to a horizontal shift of the (RR,QT ) cloud of points that would

modify the predicted QT interval and thus the QTc.

The amplitude of the bias E[RRi − RRi], where E[X] is the expectation of a

random variable X, can be estimated under the assumption that the RR intervals are
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Lag-based and time-based QT hysteresis models 7

independent and normally distributed with mean µ and variance σ2 (Appendix C):

E[RRi −RRi] =



0 AR1 model

σ2

2τs
+O(τ−2s ) EMA model

σ2

µ
+O(τ−1s ) EMAeq model

(9)

For reasonable parameter values µ = 900 ms, σ = 60 ms and τs = 50 s, the bias with

the EMAeq model is 4 ms. With a QT-RR slope of 0.2, this decreases the QT at a

given RR by 0.8 ms. With the EMA model, the bias is 0.036 ms which is negligible for

practical purpose.

2.6. Bias-corrected estimate of the QTc

The QTc is the QT interval at a stable RR interval of 1000 ms. In other words, QTc

= fγ(RR) where RR = 1000 ms and fγ is the individualized QT-RR relation. Usually,

this means that QTc = fγ(1000), but for example in the case of the EMAeq model,

the RR is biased in the presence of RR fluctuations. Instead, in first approximation,

the QT-RR function is evaluated at the mean RR for µ = 1000 ms, giving the RR

bias-corrected QTc

QTcb = fγ
(
1000 + E[RRi −RRi]

)
, (10)

where the expectation is estimated directly from the RR and RR time series. This

assumes that the shift of the QT-RR relation (fitted to the whole recording) is uniform

over all RR intervals. In the case of the EMAeq model applied to the random Gaussian

RR fluctuations of the Appendix C, this assumption is supported by the fact that

cov(RRi −RRi, RRi) = O(τ−1), so the bias is weakly correlated to the RR interval.

2.7. Intra-subject variations in QT hysteresis

The parameters that minimize E2
RMS(τ, γ;V), where V is the set of all valid beats of

the recording, will be called τ̂global and γ̂global. The parameter τ can represent either τb
or τs.

Now assume that the recording is divided into at least two subsets of beats Sk ⊂ V ,

k = A,B, . . ., representing different physiological conditions or protocol time points

(e.g. heart rate acceleration vs deceleration, supine vs standing position, exercise vs

recovery). We would like to test the (null) hypothesis that QT hysteresis is the same in

these different states. The static QT-RR relation will be assumed to remain constant

in the whole recording (γ = γ̂global). The consistency of this assumption can be tested a

posteriori by looking at the structure of the residuals. The rationale for this assumption

is that the static QT-RR relationship cannot be estimated separately in the upper

and the lower arm of a QT-RR loop. When isolated, the upper arm might indeed

be reproduced without hysteresis by shifting upwards the QT-RR relationship. Also,

if heart rate is significantly different in the segments Sk, extrapolation of the QT-RR
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Lag-based and time-based QT hysteresis models 8

relation beyond the range of RR used for the fitting procedure may be inaccurate (Vinet

et al. 2017).

The estimated hysteresis time constant τ̂k associated with the state Sk is obtained

by minimizing the mean square error E2
RMS(τ, γ̂global;Sk) over all positive values of τ .

Practically, the error is minimized in the interval from 1 to 120 sec. or beats using

an approach based on golden section search and parabolic interpolation. In order

to get a sense of the uncertainty on τ̂k, the range of τ over which the error varies

by less than 1% is calculated. For that purpose the equation ERMS(τ, γ̂global;Sk) =

1.01 ·ERMS(τ̂k, γ̂global;Sk) is solved using the regula falsi algorithm in the intervals [1, τ̂k]

and [τ̂k, 120]. In the figures, the resulting interval [τ̂−k , τ̂
+
k ] will be displayed as error

bar. The absolute uncertainty ∆τ̂k will be defined as half the length of the interval, i.e.

∆τ̂k = (τ̂+k − τ̂
−
k )/2. The relative uncertainty will be computed as ∆τ̂k/τ̂k.

3. Results

3.1. Characterization of exponential moving average filters

To illustrate and compare the characteristics of the three filters AR1, EMA and EMAeq,

a synthetic example was generated, in which the sequence (ti) was random with ti− ti−1
uniformly distributed around a mean that suddenly changes at t = 3.6 in arbitrary unit

(Fig. 1). The signal xi to be filtered is a step function with value 1 within a time interval

[1.2,5.1] and 0 otherwise. Note that in contrast with the application to RR intervals,

this signal is independent from the times ti. The time constant τs was set to 0.8 and τb
to τs/〈ti − ti−1〉, where the average 〈·〉 was calculated over the entire signal.

Left panels of Fig. 1 show the resulting filtered signals (calculated using the formulas

from Appendix A) compared to the theoretical exponential adaptation with a time

constant of τs. The AR1 filter is not able to account for local changes in heart rate, so it

either underestimates or overestimates adaptation time. The EMA filter approximates

well exponential adaptation. The EMAeq filter gives an exact step response.

In unevenly spaced time series, the weights of the filter are not stationary. The

weights expressing cardiac memory at time t = 5.2 are displayed in the right panels of

Fig. 1. The weight of the k-th beat was computed as the response at time t = 5.2 of a

unit impulse initiated at the time of the k-th beat. The results demonstrate that the

lag-based filter AR1 deviates from exponential weights when expressed as a function of

time and not lag. The EMA filter has by construction exact exponential weights. The

EMAeq has approximately exponential weights with some significant fluctuations.

3.2. Goodness-of-fit

The subject-specific parameters γ (describing the static QT-RR curve; Eq. (2)) and

τ (hysteresis time constant) were optimized for each subject and each method (AR1,

EMA and EMAeq) over the whole recordings. Table 2 summarizes the goodness-of-fit

in the three groups of subjects. The time constants τb of the AR1 model were converted
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Lag-based and time-based QT hysteresis models 9

Figure 1. Step response (left panels) and weights of the history of previous RR

intervals (right panels) expressed as a function of time for (A) the AR1 model, (B) the

EMA model and (C) the EMAeq model. The red solid curves shows exact exponential

adaptation.

into seconds by multiplying by the mean RR over the whole recording. The root mean

square (RMS) error was similar for all methods. The AR1 method was slightly better

during exercise (Friedman test p < 0.001).

The time constants τ differed slightly between the methods (in each of the three

protocols, Friedman test p < 0.01), but the uncertainty intervals of the three methods

had a common intersection in all subjects. The relative uncertainties ∆τ/τ were almost

identical and ranged from 10% to 30%, confirming that the global RMS error is not very

sensitive to the parameter τ (Vinet et al. 2017).

3.3. QT-RR curve and QTc estimation

Instead of comparing the three components of γ, the fitted QT-RR curves were compared

directly by calculating the maximum QT difference (in absolute value) between two

curves (QTdist in ms). The reference QT-RR curve was the one fitted using the AR1

model and the maximum was computed over the range of effective RR obtained from the

AR1 model. The maximum distance was typically of the order of 1 ms (Table 3). This

resulted in a QTc value fγ(1000) that was shorter with the EMA and EMAeq models

than with the AR1 model. Part of these differences in QTc were due to the RR bias

E[RRi−RRi]. This bias (biasexpRR) was zero with the AR1 model, < 1 ms with the EMA

model, and of the order of 5-6 ms with the EMAeq model (Table 3). The theoretical

value of the bias (biastheorRR ) computed from (9) gave similar numbers. This enabled a

bias correction of the QTc (QTcb in Table 3) that improved the consistency between
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Lag-based and time-based QT hysteresis models 10

Model RMS error (ms) τ (sec) ∆τ/τ

Tilt test (n = 11)

AR1 2.92 ± 0.60 28.8 ± 6.4 0.10 ± 0.03

EMA 2.93 ± 0.61 28.5 ± 6.5 0.10 ± 0.03

EMAeq 2.92 ± 0.64 29.6 ± 6.9 0.10 ± 0.03

Exercise test (n = 60)

AR1 7.52 ± 1.73 41.1 ± 8.7 0.13 ± 0.05

EMA 7.73 ± 1.70 39.8 ± 9.5 0.13 ± 0.05

EMAeq 8.01 ± 1.71 36.8 ± 9.2 0.14 ± 0.04

Holter 24h (n = 68)

AR1 7.24 ± 1.46 72.4 ± 16.4 0.29 ± 0.06

EMA 7.28 ± 1.46 68.8 ± 16.7 0.29 ± 0.07

EMAeq 7.20 ± 1.50 65.8 ± 15.4 0.29 ± 0.07

Table 2. Root mean square (RMS) error of QT prediction, the parameter τ and its

relative uncertainty ∆τ/τ shown for the three groups.

Model QTdist ∆QTc biasexpRR biastheorRR ∆QTcb

(ms) (ms) (ms) (ms) (ms)

Tilt test (n = 11)

EMA 0.6 ± 0.3 −0.2 ± 0.5 0.1 ± 0.0 0.1 ± 0.0 −0.2 ± 0.5

EMAeq 1.1 ± 0.6 −1.1 ± 0.6 5.7 ± 2.9 4.7 ± 2.9 −0.1 ± 0.4

Exercise test (n = 60)

EMA 1.4 ± 0.6 −1.0 ± 1.0 −0.4 ± 0.4 0.1 ± 0.0 −1.0 ± 1.0

EMAeq 2.2 ± 1.2 −2.0 ± 1.3 5.6 ± 2.7 6.9 ± 3.4 −1.4 ± 1.2

Holter 24h (n = 68)

EMA 0.7 ± 0.3 −0.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 −0.2 ± 0.3

EMAeq 1.8 ± 1.2 −1.1 ± 0.5 6.2 ± 3.6 6.2 ± 3.6 0.0 ± 0.5

Table 3. Comparison of the QT-RR curves of the EMA and EMAeq models with the

AR1 model as reference.

the methods, notably in Holter 24h data where RR intervals distribution is closer to a

Gaussian as hypothesized in our simplified model of random fluctuations of heart rate.

Large RR fluctuations and bimodal RR distribution during the exercise protocol made

the bias correction less accurate in that case.

3.4. Intra-subject comparison of QT hysteresis

In the following subsections, the capabilities and limitations of the three methods to

detect intra-subject differences in QT hysteresis will be evaluated. In each subject, two

conditions were distinguished, corresponding to two distinct subsets of beats: heart rate

acceleration vs deceleration in the tilt test group, exercise vs recovery in the exercise test

group, and day vs night in the Holter 24h group. Repetitions, e.g. the time segments of

exercise with different intensities, were pooled. These conditions were associated with

different heart rates (Table 4). We will test the hypothesis that QT hysteresis is different

in each condition.
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Lag-based and time-based QT hysteresis models 11

Protocol Condition mean RR (ms) mean QT (ms) # beats

Tilt test Acceleration 718.8 ± 71.4 322.8 ± 17.8 2444 ± 233

Deceleration 978.0 ± 145.6 361.6 ± 25.9 1882 ± 293

Exercise test Exercise 519.0 ± 49.9 303.2 ± 20.7 4438 ± 583

Recovery 683.0 ± 93.9 322.1 ± 24.8 3428 ± 569

Holter 24h Day 865.6 ± 95.1 359.9 ± 23.5 61227 ± 7853

Night 989.5 ± 106.5 389.0 ± 26.7 26034 ± 5551

Table 4. Mean RR and QT intervals in each condition for the three groups. The

standard deviation refers to inter-subject variability.

Protocol Curvature (s−1) Condition T0.9/T 0.9

Tilt test −0.10 ± 0.19 Acceleration (RR ↓) 1.02 ± 0.05

Deceleration (RR ↑) 0.98 ± 0.05

Exercise test −0.82 ± 0.30 Exercise (RR ↓) 1.09 ± 0.04

Recovery (RR ↑) 0.91 ± 0.04

Holter 24h 0.13 ± 0.22 Day (RR ↓) 0.98 ± 0.03

Night (RR ↑) 1.02 ± 0.03

Table 5. Ratio of the time constants of QT adaptation (T0.9) and RR adaptation

(T 0.9) for heart rate acceleration (RR ↓) and deceleration (RR ↑) in the intervals

documented in Table 4. Curvature refers to the maximal curvature of the QT-RR

curve (fitted with the AR1 model) in the same RR range.

3.5. Bias caused by the non-linearity of the QT-RR relation

Equation (7) shows that QT and RR adaptation do not have the same time constant

unless the static QT-RR relation is linear. Assuming exponential relaxation (B.1) of

the RR interval, the ratio of the time constants of QT and RR reads:

T0.9

T 0.9

=
T β

T 0.9

=
log(1− β)

log(0.1)
, (11)

where β is computed from the initial and final RR intervals and QT-RR relation

using (7).

The non-linearity of the QT-RR relation was quantified using the curvature defined

as κ = f ′′γ (RR)/(1+f ′γ(RR)2)3/2. Positive curvature means concave up, negative concave

down, and zero corresponds to a straight line. The most extreme (positive or negative)

curvature value was documented for each subject. The extremum was computed over

the RR range from the mean RR during one condition (e.g. exercise) to the mean RR

during the other condition (e.g. recovery).

To estimate the impact of non-linearity, the ratio (11) was computed for increasing

and decreasing heart rates with starting and final RR intervals given in Table 4. As

shown in Table 5, the ratio T0.9/T 0.9 depends on the curvature of the QT-RR curve in

the RR range considered. In concave down QT-RR relations, the time constant of QT

adaptation is prolonged as compared to that of RR during heart rate acceleration and

shortened during deceleration. The effect is reversed in concave up (convex) QT-RR

relations. Even if the time constant of RR were exactly the same during exercise and
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Lag-based and time-based QT hysteresis models 12

recovery, the time constant of QT adaptation would differ by up to 18%, due solely to

the effect of QT-RR non-linearity. Note that the curvature obtained depends on the

range of RR available for parameter optimization: during exercise the range is wider so

the resulting QT-RR curve exhibits saturation at higher heart rate, while at rest the

relation is close to linear and the non-linearity effect is of the order of ±2%.

Since T0.9 depends explicitly on the range of RR and on the QT-RR relation, it

appears that T 0.9 is a more intrinsic parameters. The remaining will focus on this

parameter.

3.6. Comparison of hysteresis models

The time constant τ was extracted in each subject using the three models successively for

the two conditions with increasing or decreasing heart rate (e.g. exercise and recovery)

and for the whole recording (i.e. global value of τ). The resulting values are compared

in the left panels of Fig. 2. The time constants τb in beats obviously differed from the

τs in seconds, reflecting a large inter-patient variability in heart rates. The two time

constants τs in seconds were more consistent, but τs(EMA) was longer than τs(EMAeq)

in conditions with faster heart rates and shorter in conditions with slower heart rates.

These discrepancies motivated the comparison of RR adaptation time T 0.9 (right

panels of Fig. 2). For the AR1 model, T 0.9 was computed using (8) where β = 0.9 and

RRB was the (subject-specific) mean RR among the beats from which τb was extracted.

For the EMA model applied to one condition, formula (8) was used; RRA was the mean

RR among the beats not considered. For example, to compute T 0.9 during exercise,

RRB = mean RR during exercise and RRA = mean RR during recovery. For the EMA

model on the whole recording and for all applications of the EMAeq model, T 0.9 was

set to τs log(10). As a result of these corrections, the consistency of T 0.9 between the

models was improved as compared to τ .

3.7. Intra-subject differences in time constant

In each protocol, the intra-subject variations of QT hysteresis time constant was studied

in the two conditions associated with different mean heart rates. Figure 3 shows a Bland-

Altman plot of the time constants τ in beats or in seconds for both conditions. During

tilt test, the time constant was shorter during heart rate deceleration. The difference was

significant with the AR1 model (paired t-test p < 0.01) and the EMA model (p < 0.05)

but disappeared with the EMAeq model (panel A). During Holter 24h, the variability

was large and no difference was found except using the EMAeq model, where the time

constant was longer at night (panel C). During exercise test, the time constant was

significantly longer during recovery whatever the model (panel B).

Since these differences may simply be caused by changes in heart rate, T 0.9 was

computed with correction for heart rate as in the previous subsection. Figure 4 shows

the same plots as Fig. 3 for T 0.9. The differences during tilt test disappeared (panel A),

demonstrating that the differences observed in Fig. 3 were likely due to a bias of the
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Lag-based and time-based QT hysteresis models 13

Figure 2. Comparison of the methods AR1, EMA and EMAeq to estimate τ (left

panels) and T 0.9 (right panels). Red points correspond to estimates over the condition

with faster heart rates (acceleration, exercise, day), green points correspond to slower

fast rates (deceleration, recovery, night) and black points are estimated over the whole

recording. Error bars cover the range where the root mean square error increases by

< 1 %.
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Lag-based and time-based QT hysteresis models 14

Figure 3. Bland-Altman plots of the time constant τ for the three models AR1, EMA

and EMAeq representing: (A) τ(deceleration) − τ(acceleration) during tilt test, (B)

τ(recovery) − τ(exercise), and (C) τ(night) − τ(day) in Holter 24h. The length of

the error bars is equal to the square root of the sum of the uncertainties of the two

measures of τ . The mean (horizontal dashed line) ± 1.96 × standard error on the

mean (dotted lines) are also shown. The stars refer to a paired t-test: * p < 0.05, **

p < 0.01, *** p < 0.001.

method caused by the slower mean heart rate during deceleration (Table 4). In contrast,

during Holter 24h, the adaptation time T 0.9 was also longer at night (p < 0.05) with

the models AR1 and EMA. The results were preserved for the exercise protocol.

In the Bland-Altman plots of Fig. 4B, a correlation coefficient from 0.47 to 0.56

was observed, meaning that the larger the value of τ , the larger the τ difference between

exercise and recovery. Using the EMAeq model, effect size, defined as the τ difference

divided by τ , was found to be of the order of 33% in the exercise protocol, and 13%

between days and nights.

4. Discussion and conclusion

We studied three models of QT hysteresis (AR1, EMA and EMAeq). The lag-based

model AR1 has a time constant in beats, an exact exponentially decreasing weight

(impulse response) and an exact exponential adaptation to an abrupt change in heart
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Lag-based and time-based QT hysteresis models 15

Figure 4. Bland-Altman plots of the time constant T 0.9 (T90) for the three models

AR1, EMA and EMAeq representing: (A) T 0.9(deceleration) − T 0.9(acceleration)

during tilt test, (B) T 0.9(recovery) − T 0.9(exercise), and (C) T 0.9(night) − T 0.9(day)

in Holter 24h. The length of the error bars is equal to the square root of the sum of

the uncertainties of the two measures of T 0.9. The mean (horizontal dashed line) ±
1.96 × standard error on the mean (dotted lines) are also shown. The stars refer to a

paired t-test: * p < 0.05, ** p < 0.01, *** p < 0.001.

rate (step response). Since no time-based model with a time constant in seconds can

combine these two properties, we had to develop a model with an exact exponential

impulse response (EMA) and a model with an exact exponential step response (EMAeq).

Thank to an efficient implementation exploiting recurrence formulas, computational

complexity of these three models is similar. They also use the same inputs (QT and RR

time series) and depend on a single parameter (the time constant).

The choice between these hysteresis models needs to be evaluated depending on the

target application. The theoretical results demonstrated in this paper provide a guide

for this choice. QT hysteresis models may be used for two main purposes: improving the

accuracy of QT correction and extracting a physiological biomarker (a time constant).

As far as QT correction is concerned, time-based models (EMA and EMAeq) did

not present any advantage over the simpler lag-based model (AR1). The differences

in global goodness-of-fit (RMS error) were essentially meaningless, except in the case
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Lag-based and time-based QT hysteresis models 16

of exercise test where the assumption that the time constant in beats is the same in

exercise and recovery (AR1 model) led to slightly smaller RMS error (Table 2). This

is consistent with the results from Malik et al. (2008). In addition, time-based models

may cause a small bias in QTc because the mean of RR is not equal to the mean of

RR. Although this bias can be corrected to some extent (Table 3), the AR1 model

does not suffer from that disadvantage. Note that ECG data in this study were from

normal subjects in sinus rhythm. In the presence of arrhythmia (e.g. atria fibrillation or

frequent premature ventricular contractions), drug intake (e.g. beta blockers) or diseased

heart, these results may have to be reconsidered. Nevertheless, hysteresis models

similar to ours have been used successfully in patients with atrial flutter (Jacquemet

et al. 2014), atrial fibrillation (Pickham et al. 2012, Riad et al. 2017), depression and

panic disorder (Baumert et al. 2008), during normal and abnormal pregnancy (Baumert

et al. 2010), in patients at risk of torsade de pointes (Trost 2008), and in survivors of

acute myocardial infarction (Smetana et al. 2004). Time-based hysteresis models may

be particularly useful when heart rate variability is high, as during atrial arrhythmias

(Riad et al. 2017).

When the objective is to extract a biomarker representing the time constant of

QT hysteresis, the use of a time-based model becomes more valuable, notably in the

situation of a QT-RR loop where the hypothesis is that the increasing and the decreasing

arms of the loop are associated with a different hysteresis time constant. This requires

comparing time constants in two conditions with different and not necessarily stable

heart rates. The lag-based time constant can be corrected for heart rate (Fig. 2) as long

as each condition can be associated with a single average heart rate (e.g. unimodal RR

distribution). Despite having a time constant in seconds, the EMA model only has an

approximate exponential adaptation to heart rate changes, causing a small bias in the

determination of the time constant (underestimated when heart rate accelerates and

overestimated when it decelerates). The EMAeq resolves that problem at the expense

of a more complicated (non-monotonic) weights for the history of RR intervals.

In the clinical applications, the use of time-based models may lead to the

suppression (tilt test) or apparition (day vs night) of statistically significant differences

in hysteresis time constant (Fig. 3). The comparison of exercise vs recovery was however

conclusive with all methods. The results were more consistent after correction of the

time constants for heart rates (Fig. 4), thus providing more reliable biomarkers. It is

important to remember that the corrections for AR1 and EMA rely on the assumption

that the subject undergoes an abrupt transition from a condition A with stable RR to a

condition B with faster or slower, but still stable RR. This might not be true in clinical

applications, and may lead to a bias due to the choice for the value of the stable RR.

The EMAeq method, though, does not necessitate such correction.

The uncertainties on the time constants were large with all methods (Table 2)

expressing the fact that the RMS error is low for a wide range of parameter values

around its optimum (Vinet et al. 2017). In the exercise test, effect size (EMAeq model)

was about 33% (Fig. 4B) while uncertainty was 14% (Table 2). On the other hand,
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Lag-based and time-based QT hysteresis models 17

in the day vs night comparison, effect size was about 13% and uncertainty 30% with

significant dispersion in the differences (Fig. 4C). It is therefore advisable to compare

the time constants for all the model variants before reaching conclusion.

The theoretical and experimental results of this paper suggest that the lag-based

AR1 model is sufficient for determining QT-RR relations and the QTc interval, the

time-based EMA model is preferable for studying the weights of the history of past

RR intervals, and the time-based EMAeq model is more reliable for estimating the

differences in hysteresis time constant in different physiological conditions. If needed,

more sophisticated two-parameter QT hysteresis models (Halamek et al. 2010) may be

created by combining the proposed models as building blocks. For instance, the model

R̃Ri = f ·RRi + (1−f) ·RRi, where 0 < f < 1 is a parameter to optimize, incorporates

both an instantaneous response and a slow adaptation (Jacquemet et al. 2011, Riad

et al. 2017).
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Appendix A. Recurrence formulas

Consider the general situation of an unequally spaced signal (ti, xi)i=1,...,N . The output

x̄i of an exponential moving average filter applied to this signal is written as

x̄i =
ai
bi
, where ai =

∑
j≤i

wi,jxj and bi =
∑
j≤i

wi,j , (A.1)

generalizing Eq. (3).

With the lag-based model wi,j = e−(i−j)/τb , it is straightforward to verify that the

following recurrence relations hold:

ai+1 = xi+1 + c ai (A.2)

bi+1 = 1 + c bi (A.3)

c = e−1/τb (A.4)

with the initial condition a1 = x1 and b1 = 1. Note that for an infinitely long constant

sequence with xi = x0, we have ai = x0/(1− c) and bi = 1/(1− c). In order to stabilize

the variations of x̄ at the beginning of the recording, it is preferable to use the initial

condition a1 = x0/(1−c) and b1 = 1/(1−c), where x0 may be x1 or the average of x over

the first few beats or minutes. It is equivalent to assuming that heart rate was constant
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Lag-based and time-based QT hysteresis models 18

before the beginning of the recording. With that initial condition, bi = 1/(1 − c) for

all i and therefore

x̄i+1 = ai+1/bi+1 = (1− c)xi+1 + c x̄i (A.5)

with the initial condition x̄1 = x0, which corresponds to the autoregressive filter of

order 1. This filter will be referred to as AR1.

Interestingly, as shown in the context of financial time series by Müller (1991)

and by Eckner (2017), the recurrence relations can be generalized to the case of the

time-based exponential filter with wi,j = e−(ti−tj)/τs :

ai+1 = xi+1 + ci+1 ai (A.6)

bi+1 = 1 + ci+1 bi (A.7)

ci+1 = e−(ti+1−ti)/τs (A.8)

These relations can be verified by substituting the definition of ai and bi, and (6) into

them. The initial condition can be set to b1 = 1/(1 − exp(−∆t0/τs)) and a1 = b1x0
by analogy with the lag-based approach. The parameter ∆t0 can be set to an average

of ti+1 − ti over the first few beats of minutes. When the RR time series is filtered,

xi+1 = ti+1− ti so ∆t0 = x0. This filter will be referred to as EMA (exponential moving

average). Its output can be computed using O(N) operations whatever the value of the

time constant τs, which would enable fast real-time computation in an ECG acquisition

machine.

In order to create a filter that generalizes the AR1 filter using time-dependent

coefficients, the EMA filter can be simplified by instantaneously adapting bi to local

changes in heart rate. Similarly to the lag-based model, we set bi = 1/(1− ci), and, as

a result,

x̄i+1 = (1− ci+1)xi+1 + ci+1 x̄i (A.9)

ci+1 = e−(ti+1−ti)/τs (A.10)

with the initial condition x̄1 = x0. This recurrence formula will be referred to as the

EMAeq filter, as in Eckner (2017). Since the constant time series xi = 1 gives x̄i = 1

whatever the sequence (ti), the weights of the filter are properly normalized.

The weights associated with this recurrence formula are however not exponential.

After iterative substitution of (A.9) on itself and identification with x̄i+1 =
∑

j≤i w̃i,jxj,

the normalized weights w̃i,j are found to be

w̃i,j = (1− cj)
i∏

k=j+1

ck =
(
1− e−(tj−tj−1)/τs

)
e−(ti−tj)/τs (A.11)

≈ tj − tj−1
τs

e−(ti−tj)/τs (A.12)

where the approximation is valid when tj − tj−1 � τs for all j. This means that the

EMAeq filter gives more weight to long RR than to short RR. In a certain sense, the

filtered time series x̄i is an approximation of the integral

x̄i ≈
∫ ti

−∞
x(t)

1

τs
e−(ti−t)/τs dt (A.13)
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Lag-based and time-based QT hysteresis models 19

where x(t) is a continuous function interpolating the x time series and dt originates

from tj − tj−1.

Appendix B. Step response of hysteresis models

Assume that the RR time series is an abrupt change in heart rate: RRi = RRA if i ≤ 0

and RRi = RRB if i > 0. Then, ti = iRRA if i ≤ 0 and ti = iRRB if i > 0. In this case,

analytical expressions for the effective RR intervals can be derived. These expressions

will be compared to the exponential adaptation formula with time constant τ

RR
exp

i (τ) = RRA exp(−ti/τ) +RRB(1− exp(−ti/τ)) . (B.1)

In the lag-based AR1 model with time constant τb (in beats), the evolution of RR

is exponential as a function of the beat number, and therefore also as a function of time

since the beats are evenly spaced for t > 0:

RR
AR1

i = RR
exp

i (τb RRB) (B.2)

for i ≥ 0.

The effective RR intervals in the EMA model with time constant τs can be written

explicitly as (after some algebraic manipulations involving summation of geometric

sequences)

RR
EMA

i =
eBRRA + eARRB (exp(ti/τs)− 1)

eB + eA (exp(ti/τs)− 1)
(B.3)

when i ≥ 0 and where ek = 1− exp(−RRk/τs) for k = A,B. Since the time constant of

QT adaptation is of the order of a minute, RRk � τs so ek ≈ RRk/τs and the formula

can be simplified to an expression involving heart rates (HR)

HR
EMA

i = HRA exp(−ti/τs) +HRB(1− exp(−ti/τs)) (B.4)

where HRi = 1/RRi and HRk = 1/RRk. Therefore in the EMA model, the heart rate

and not the RR interval follows an exponential adaptation. Note that it implies that

RR
EMA

i is a weighted harmonic mean of RRA and RRB. Application of the weighted

harmonic-geometric-arithmetic inequality and the Kantorovich inequality (Maze and

Wagner 2009) shows that

RR
exp

i (τs)
4RRB/RRA

(1 +RRB/RRA)2
≤ RR

EMA

i ≤ RR
exp

i (τs) . (B.5)

According to the first inequality, the discrepancy between RR
EMA

i and RR
exp

i is bounded

by a factor that is close to one if RRA ≈ RRB. For example, for a jump in RR intervals

from 1000 ms to 600 ms or the reverse, the ratio RR
EMA

i /RR
exp

i varies over time between

0.938 and 1. The bounds (B.5) are actually tight.

The EMAeq model is here equivalent, for t ≥ 0 (where RR intervals are constant),

to an AR1 model with τb = τs/RRB, which means that

RR
EMAeq

i = RR
exp

i (τs) . (B.6)
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Thus, in the EMAeq model, the adaptation from RRA to RRB and the recovery

from RRB back to RRA are symmetric and exponential with the same time constant.

Interestingly, if RR(t) is defined as RRA if t ≤ 0 and RRB if t > 0, then∫ ti

−∞
RR(t)

1

τs
e−(ti−t)/τsdt = RR

exp

i (τs) (B.7)

which means that although the EMAeq model only approximates the integral (A.13),

its step response is exactly exponential. More sophisticated models, for example based

on linear interpolation of RR intervals (Eckner 2017), do not have that property.

Appendix C. Estimate of the bias

The RR time series will be assumed to follow a stationary random process with RRi

being independent and normally distributed with mean µ and variance σ2. The objective

is to calculate the bias E[RRi−RRi], where E[X] is the expectation of a random variable

X. Clearly, in the AR1 model, the bias is zero since the filter is linear and time-invariant.

This is not the case with the EMA and EMAeq models. We are going to use the fact

that if Z is a normal random variable with mean 0 and variance 1:

E[e−aZ ] = ea
2/2 and E[e−aZZ] = −a ea2/2 . (C.1)

In the EMAeq model with time constant τ , the expectation of (A.9) becomes

E[RRi] = E[RRi]− E[ciRRi] + E[ci] E[RRi−1] (C.2)

since ci and RRi−1 are independent. Then, the bias can be explicitly obtained using

(C.1) and the stationarity E[RRi−1] = E[RRi]

E[RRi −RRi] =
σ2/τ

exp
(
µ
τ
− σ2

2τ2

)
− 1

=
σ2

µ
+O(τ−1) (C.3)

where the approximation is valid when µ, σ � τ .

Calculations are more tedious in the EMA case with time constant τ , but can still

be performed analytically. The bias can be estimated using the approximation of the

expectation of a quotient (Stuard and Ord 1994)

E

[
ai
bi

]
≈ E[ai]

E[bi]
− cov(ai, bi)

E[bi]2
+

var(bi)E[ai]

E[bi]3
. (C.4)

Using the same approach as in the EMAeq case, the different expectations are calculated

in the large τ limit:

τ−1 E[ai] = 1 +O(τ−1) (C.5)

τ−1 E[bi] =
1

µ
+O(τ−1) (C.6)

τ−1 var(bi) =
σ2

2µ3
+O(τ−1) (C.7)

cov(ai, bi) = − σ2

4µ

(
1− σ2

µ2

)
+O(τ−1) (C.8)
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As a result, the first term of (C.4) is equal to µ and the second is negligible as compared

to the third one. This leads to a simple approximate formula for the bias

E[RRi −RRi] = E

[
ai
bi

]
− µ =

σ2

2τ
+O(τ−2) . (C.9)

To estimate the parameters µ and σ from the signals, the following formula can be

derived using the same method as previously. For the AR1 model with c = e−1/τ ,

E[(RRi −RRi)
2] =

2c2

1 + c
σ2 = σ2

(
1− 3

2
τ−1
)

+O(τ−2) . (C.10)

Similarly, for the EMA model,

E[(RRi −RRi)
2] = σ2 +O(τ−1) , (C.11)

and, for the EMAeq model

E[(RRi −RRi)
2] = σ2 +

σ4

µ2
+O(τ−1) ≈ σ2 . (C.12)

Obviously µ = E[RRi]. In a practical case, the expectation is replaced by a mean over

the samples.
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