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Abstract

Long QT syndrome (LQTS) is an inherited disorder associated with 
prolongation of the QT/QTc interval on the surface electrocardiogram 
(ECG) and a markedly increased risk of sudden cardiac death due to cardiac 
arrhythmias. Up to 25% of genotype-positive LQTS patients have QT/QTc 
intervals in the normal range. These patients are, however, still at increased 
risk of life-threatening events compared to their genotype-negative siblings. 
Previous studies have shown that analysis of T-wave morphology may 
enhance discrimination between control and LQTS patients. In this study we 
tested the hypothesis that automated analysis of T-wave morphology from 
Holter ECG recordings could distinguish between control and LQTS patients 
with QTc values in the range 400–450 ms. Holter ECGs were obtained from 
the Telemetric and Holter ECG Warehouse (THEW) database. Frequency 
binned averaged ECG waveforms were obtained and extracted T-waves were 
fitted with a combination of 3 sigmoid functions (upslope, downslope and 
switch) or two 9th order polynomial functions (upslope and downslope). 
Neural network classifiers, based on parameters obtained from the sigmoid 
or polynomial fits to the 1 Hz and 1.3 Hz ECG waveforms, were able to 
achieve up to 92% discrimination between control and LQTS patients and 
88% discrimination between LQTS1 and LQTS2 patients. When we analysed 
a subgroup of subjects with normal QT intervals (400–450 ms, 67 controls and 
61 LQTS), T-wave morphology based parameters enabled 90% discrimination 
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between control and LQTS patients, compared to only 71% when the groups 
were classified based on QTc alone. In summary, our Holter ECG analysis 
algorithms demonstrate the feasibility of using automated analysis of T-wave 
morphology to distinguish LQTS patients, even those with normal QTc, from 
healthy controls.

Keywords: cardiac arrhythmia, sudden cardiac death, long QT syndrome, 
Holter ECG, T-wave morphology, neural network classifier
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1. Introduction

The pumping activity of the heart is controlled by a high fidelity electrical signalling system 
that ensures the co-ordinated contraction and relaxation of the heart muscle. The surface elec-
trocardiogram (ECG) provides a non-invasive means of monitoring these electrical signals, 
and as such has been an invaluable clinical diagnostic tool for over 100 years (Rosen 2002). 
The resting ECG, which is typically recorded over 3–4 cardiac cycles, provides a snapshot 
of the status of the heart. Alternatively, a Holter ECG can provide insights into the dynam-
ics of cardiac electrical activity during a 24 h period (Zareba and De Luna 2005) to the large 
computational demands required for processing and analysing the amounts of data that can 
be recorded (of the order of 100 000 beats per 24 h), until recently the clinical application 
of Holter ECG recordings have been largely limited to detecting arrhythmic episodes and/
or ectopic beats (Mauriello et al 2011, Katritsis et al 2013) and assessing heart rate variabil-
ity (Task Force of The European Society of Cardiology and The North American Society of 
Pacing and Electrophysiology 1996). However, there is widespread recognition that there is 
a wealth of information related to dynamics of depolarization and repolarization contained 
within Holter ECG recordings that could also have significant clinical utility (Baumert 2016, 
Baumert et al 2016).

Congenital long QT syndrome (LQTS) is an autosomal dominant condition caused by 
mutations in genes that encode for cardiac ion channels or proteins that regulate their activity. 
There are at least 16 different genetic subtypes of LQTS, however the majority of patients have 
mutations in one of two potassium channel genes; mutations in KCNQ1 (LQTS1) account for 
~35% of all LQTS patients and mutations in KCNH2 (LQTS2) account for ~30% of all LQTS 
patients (Splawski et al 2000). LQTS is characterised by delayed cardiac repolarization, which 
manifests as prolongation of the QT interval on the surface electrocardiogram (ECG) and 
results in a markedly increased risk of sudden cardiac death (Moss and Schwartz 2005). The 
natural history of LQTS can range from death in utero, to sudden death in the young, occa-
sional syncopal episodes to an asymptomatic course well into adulthood. Patients with mild 
disease can be adequately managed with drug therapy (Vincent 2005) whereas patients with 
severe disease warrant prophylactic treatment with an implantable cardiac defibrillator (Zipes 
et al 2006). The critical question then is how to predict in advance those patients who are at 
greatest risk of a lethal cardiac arrhythmia. To complicate matters further, whilst prolongation 
of the QTc interval on the surface electrocardiogram (ECG) is the pathognomonic feature of 
LQTS, there is tremendous overlap between the QTc intervals of ‘normal population’ and 
genotype positive LQTS patients (Goldenberg et al 2011). Subjects with greatly prolonged 
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QTc intervals on their ECG who present with syncopal episodes are easy to diagnose but those 
with no overt symptoms and only mildly prolonged or normal range QTc may escape detec-
tion. Furthermore, QT interval is modified by heart rate and so a snapshot measurement of 
QT on a resting ECG may miss a potentially prolonged QTc interval (Page et al 2016). Thus 
measurement of QTc interval alone is an inadequate screening tool. Furthermore, whilst a 
markedly prolonged QTc interval is associated with greater risk of sudden death (Goldenberg 
et al 2008) it is not an adequate marker for identification of patients at high risk of sudden 
death.

The QT interval is just one measure of the repolarization properties of the heart and recently 
there has been considerable interest in looking at whether additional measures of repolariza-
tion could assist with deeper phenotyping of patients with long QT syndrome (Page et  al 
2016). For example, there is good empirical evidence that LQTS patients have altered T-wave 
morphology (Lehmann et al 1994) and that there are distinct differences between the differ-
ent LQTS subtypes. For example, LQTS1 patients typically show broad tall T-waves whilst 
LQTS2 patients typically show low amplitude and often bifid T-waves (Moss and Robinson 
1992). The challenge now is to develop tools to convert these observations into quantifiable 
parameters that they can be used to more fully characterize the repolarization phenotypes of 
patients. Previous attempts to quantify repolarization morphology included T-wave modeling 
approaches (Padrini et al 1995, Kanters et al 2004, Badilini et al 2008), quantification of the 
time and amplitude distribution across the T-wave (Zareba et al 2000, Couderc et al 2003, 
Vaglio et al 2008), measurement of changes in the morphology of the T-loop (Zabel et al 
2002), and ratio of the upslope to downslope of the T-wave (Couderc et al 2006, Bhuiyan 
et  al 2015). These studies however have largely relied on manual measurements or semi-
automated analysis of digitized ECG signals. Furthermore, most of these studies have been 
largely restricted to analysis of resting ECGs and so have not incorporated dynamic changes 
such as those associated with changes in heart rate.

In this study, we sought to develop computer algorithms for quantifying the T-wave morph-
ology of ECG tracings recorded at different heart rates. We then used these tools to test the 
hypothesis that addition of T-wave morphology biomarkers could improve discrimination 
between control and LQTS patients as well as between subtypes of LQTS patients. We also, 
show that the addition of T-wave morphology biomarkers can greatly improve the detection of 
genotype-positive LQTS patients with normal QT intervals.

2. Methods

2.1. Study population

Holter ECG records (with de-identified patient details), along with their cardiac beat annota-
tion information, were obtained from the THEW database (Couderc 2010) for subjects in 
three groups: Controls, LQTS1 and LQTS2. Demographics of patients that were included in 
the final analysis are summarized in table 1. Recordings were digitized at 200 Hz. Where there 

Table 1. Summary of patient group included in final analyses.

Control LQTS1 LQTS2

Age (yrs)a (mean  ±  SD) 35.6  ±  14.6 28.2  ±  17.7 28.6  ±  18.7
Gender 75F/65M 78F/55M 29F/32M
Beta blocker (n, %) (0, 0%) (36, 27%) (23, 38%)

a One subject in control, one in LQTS1 and one in LQTS2—no age entry.
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were multiple recordings for the same patient we chose the earliest recording for adult patients 
whereas for children we chose the most recent recording that was made prior to commence-
ment of ß-blockers.

2.2. ECG processing and measurements

Recordings from lead I, which had upright T-waves (Controls, 159; LQTS1, 171; LQTS2, 
89) were processed through automated routines developed using signal processing toolbox 
in MATLAB environment. Heart beats were grouped into six bins according to the beat fre-
quency in Hz. The six bins contained beats that fell within the range 0.875–0.925, 0.975–
1.025, 1.075–1.125, 1.175–1.225, 1.275–1.325, 1.375–1.425 Hz. For simplicity each bin is 
referred to by its central frequency (0.9, 1.0, 1.1, 1.2, 1.3, 1.4 Hz). Further, we filtered bins 
based on R-wave amplitude and RR interval of the subsequent beat. This was done to exclude 
outliers, ectopic beats and beats with abnormally short or long coupling with subsequent 
beats, as previously described (Hodkinson et al 2016). Average ECG curves from within each 
bin were extracted, with a criterion that at least 100 beats had to be included to qualify for 
averaging. The technique called RR bin analysis allows for controlling the effect of heart rate 
on repolarization measurements (Badilini et al 1999).

2.2.1. Fiducial points. Beat to beat R peak locations were extracted from the cardiac annota-
tion information made available in the THEW database. To detect Qstart, we analysed the 
differentiated ECG signal in the 60 ms preceding the R peak. The T-P interval was used to 
define the isoelectric line according to standard practice (Goldenberg et al 2006). The end of 
the T wave was defined as the intercept of an isoelectric level and a line tangential to the point 
of maximum T wave down slope. Fiducial points corresponding to Q, R, peak of T wave and 
end of the T-wave were confirmed by visual inspection by two independent investigators (JV 
& SI). If the automatically picked fiducial points did not correspond (within ~20 ms) to the 
manually picked points, the averaged ECG trace was discarded from the analysis. The number 
of subjects for which averaged ECGs at each frequency bin satisfied both the minimum crite-
rion of 100 beats and passed visual inspection tests are summarized in supplementary table 1 
(stacks.iop.org/PM/37/1456/mmedia).

2.2.2. Curve fitting. To extract the T wave segment for fitting with sigmoidal and polynomial 
functions, a peak search algorithm was applied to the post-QRS segment of the average curves 
to locate peak of T wave (Tp). From this point, the start of the T wave segment for curve fitting 
was defined as a point midway between the peak of the R wave (Rp) and Tp and the end of the 
T wave segment for curve fitting was set an equivalent time after Tp.

This T-wave segment was fitted with a combination of three Boltzmann sigmoidal func-
tions (upslope, downslope and switch) given by the general expression

=
−

+
+

± τ
−y

A A
A

1  e }
1 2

2x x0{   
(   ) (1)

where A1 and A2 are the magnitudes at the start and the end of each segment, x0 is the time 
point at mid value between A1 and A2 and tau are the time constants corresponding to each of 
the upslope (tau1), switch (tau3) and the downslope (tau2) segments of the T wave, with nega-
tive sign on the exponent being applied during the downslope sigmoidal fitting (see figure 2 
below). The T wave segments were also fitted with two 9th order polynomial functions, one 
for the upslope and one for the downslope and the fitting coefficients were determined:
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where U0 to U9 and D0 to D9 are the respective coefficients for the up and down slope polyno-
mial fits (see figure 3 below). A summary of all parameters derived from the fitting procedures 
are summarised in table 2.

2.3. Neural network classifiers

To investigate whether the extracted T-wave morphology markers could improve diagnostic 
classification of LQTS versus control and between LQTS subtypes we used a neural network 
classifier approach and compared their performance when based on conventional parameters 
to those based on parameters derived from different fitting techniques. We used the MATLAB 
neural network toolbox where the Levenberg–Marquardt back-propagation training algorithm 
was used to train a multilayer (8-layered) perceptron neural network using the mean square 
error performance function. Classifiers were derived for (i) Control versus LQTS and (ii) 
LQTS1 versus LQTS2. In both classifiers, the aim is to assign the input subjects to one of two 
classes, so that they represent the probability of class membership. Parameters derived from 
ECG curves averaged within each frequency bin were fed in three groups (i) Conventional (ii) 
Sigmoid fit based (iii) Polynomial fit based. Each classifier was run 100 times with subject 
data during each run randomly divided and assigned: 70% for training the network, 15% for 
testing and 15% for validation of the network. Classification results of the neural networks are 
presented as example ROC curves and average data presented in confusion matrices.

2.4. Statistical analysis

Data were analyzed with the Prism software package (GraphPad Software Inc., San Diego 
CA) version 5.01 for Windows (Microsoft, Washington, USA). One-way analysis of variance 
(ANOVA) and post hoc multiple comparisons using Tukey method were used to compare 
(i) distribution of parameters between groups within each frequency bin and (ii) neural net-
work discrimination between groups based on conventional, sigmoid or polynomial fitting 

Table 2. ECG parameters analyzed in this study.

Conventional parameters

Q_T Q to T end (tangent) (ms)
TpTe T peak to T end (ms)
Th Height of T peak (μV)

Sigmoid fit based parameters
sig_int Sigmoid intercept point (ms)
tau1 Time constant for sigmoid fit of T wave upslope (ms)
tau2 Time constant for sigmoid fit of T wave downslope (ms)
tau3 Time constant for sigmoid fit of T wave switch (ms)

Polynomial fit based parameters
Max_loc Location of T peak (ms)
U0 to U9 Polynomial fitting coefficients for upslope of T wave
D0 to D9 Polynomial fitting coefficients for downslope of T wave
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parameters within frequency bins (iii) neural network discrimination between frequency bins 
within each parameter group. Student t test was used to compare parameters between control 
and LQTS in the sub group analysis of subjects with QT in the normal range.

3. Results

We did not obtain averaged curves over the entire frequency range (0.9 Hz–1.4 Hz) for all sub-
jects. Accordingly, we have focused our analyses on the data obtained at 1.0 Hz and 1.3 Hz as 
this combination of frequency bins enabled us to keep the largest number of subjects: 140/159 
controls, 133/171 LQTS1 patients and 61/79 LQTS2 patients and include HR dependence into 
the classifier analyses. A summary of the parameter distributions obtained at all frequencies is 
provided in the data supplement (supplementary table 1) whilst only the parameter distribu-
tions for averaged ECGs recorded at 1.0 Hz and 1.3 Hz are shown in the figures.

3.1. Conventional parameters

An example 1 Hz ECG waveform obtained from a LQTS2 patient is shown in figure 1(a), 
with the QT, Th and TpTe parameters highlighted. Box and whiskers plots for the values of QT, 
Th and TpTe at 1.0 Hz and 1.3 Hz are shown in figure 1(b) panels (i)–(iii) respectively. There 
were statistically significant differences between the three parameters for control, LQTS1 and 
LQTS2 at both 1.0 and 1.3 Hz. Furthermore, all parameters showed frequency dependences 
with values for QT, Th and TpTe all lower at 1.3 Hz than at 1.0 Hz. It is also notable that the 
differences between LQTS1 and LQTS2 are more marked at 1.0 Hz compared to 1.3 Hz.

3.2. Sigmoid parameters

The fitting of the three sigmoid functions to the example LQTS2 ECG T-wave segment is 
shown in figure 2(a) and summaries of the values for sig int, tau1, tau2 and tau3 are shown 
as box and whiskers plots in figure 2(b), panels (i)–(iv) respectively. Sig int, which is related 
to but not identical to QTp, is significantly longer in LQTS subjects, as expected. A longer 
tau1 reflects a longer upslope of the T-wave. A longer tau2 reflects a longer downslope and a 
longer tau3 reflects a slower cross over between the up and down slopes. Tau1, is statistically 
significantly different between all three groups whereas tau2 and tau3 are similar between 
control and LQTS1 and only different for LQTS2. Tau1 is also the only one of the three time 
constants to show a frequency-dependence.

3.3. Polynomial parameters

The fitting of polynomial functions to the upslope and downslopes of the T-wave segments 
are illustrated in figure 3(a). The polynomial coefficients U0 and D0 represent the height of the 
T-wave at the midpoint of the upslope segment and downslope segments respectively and U1, 
D1 are the values of the slope of the upslope and downslope at theses midpoints. Summaries of 
the values for max loc, U0, U1, D0 and D1 are shown as box and whiskers plots in figure 3(b), 
panels (i)–(v) respectively. U0 and D0 are both larger for LQTS2 compared to controls or 
LQTS1. U0 and D0 tend to be slightly smaller for LQTS1 compared to controls but this only 
reaches statistical significance for U0 at 1.3 Hz. U1 is smaller in LQTS1 compared to controls 
whereas it is larger in LQTS2 compared to controls. D1 is larger (in negative direction) in both 
LQTS1 and LQTS2 compared to controls. D1 is close to zero in controls, reflecting the fact 
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Figure 1. (a) Representative ECG signal from a LQTS2 patient highlighting QT, Th, 
and TpTe. (b) Box (25–75%) and whisker (5–95%) plots for (i) QT, (ii) Th, and (iii) TpTe 
values obtained from averaged ECG waveforms for control, LQTS1 and LQTS2 for 
the 1 Hz and 1.3 Hz binned beats. Lines above box and whisker plots show statistical 
comparisons with ∗: p  <  0.01 and ∗∗: p  <  0.001.
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Figure 2. (a) Representative ECG signal from a LQTS2 patient showing the three 
sigmoidal function fitting on the T wave. Note that the bifid T-wave upstroke is only 
crudely approximated (grey line) whereas the monotonic downstroke is well fitted by 
the sigmoidal function fit. (b) Box (25–75%) and whisker (5–95%) plots for (i) sig int, 
(ii) tau1, (iii) tau2, and (iv) tau3 for control, LQTS1 and LQTS2 at 1 Hz and 1.3 Hz. 
Lines above box and whisker plots show statistical comparisons with ∗: p  <  0.01 and 
∗∗: p  <  0.001.
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that the T-wave has returned to baseline by the midpoint of the analysis window (i.e. it is a flat 
line). As with the sigmoid functions, polynomial parameters can distinguish between controls 
and LQTS as well as between LQTS1 and LQTS2.

Figure 3. (a) Representative ECG signal from a LQTS2 patient with the T-wave 
upslope segment and T-wave downslope segments shaded in blue and red respectively. 
A 9th order polynomial function was fitted to both the upslope and downslope. The 
t0 coefficient was defined as the height of the curve at the midpoint of the upslope 
and downslope segments. Both the bifid T-wave upstroke and the monotonic T wave 
downstroke are well fitted by 9th order polynomial functions. Also, highlighted are the 
first two polynomial components (U0, U1 and D0, D1). (b) Box (25–75%) and whisker 
(5–95%) plots for (i) U0/Th, (ii) U1/Th, (iii) max loc, (iv) D0/Th and (v) D1/Th for control, 
LQTS1 and LQTS2 at 1 Hz and 1.3 Hz. Lines above box and whisker plots show 
statistical comparisons with ∗: p  <  0.01 and ∗∗: p  <  0.001.
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3.4. Use of T-wave morphology parameters to classify LQTS patients

To investigate whether T-wave morphology markers could improve diagnostic classification 
of LQTS versus control and between LQTS subtypes, we used a neural network classifier 
approach as explained in the methods section 2.3. The performance averaged over 100 runs of 
teach classifier type i.e. Control versus LQTS and LQTS1 versus LQTS2 when fed with each 
parameter group, within each frequency bin is shown in supplementary figure 1. Though most 
parameters used in our analysis exhibited significant heart rate dependence, it was observed 
that within each parameter group the classifier performances were not significantly different 
between the different frequency bins (supplementary figure 1). Hence to maximize the num-
ber of subjects with average curves that enter the analysis and at the same time include heart 
rate dependence of paramters into account, data from frequency bins 1 Hz and 1.3 Hz were 
utilized in running the classifiers.

Typical example ROC curves for NN classifier outputs based on conventional parameters, 
sigmoid parameters and polynomial parameters (including data at both 1.0 and 1.3 Hz) are 
shown in the left panel of figure 4. These curves were chosen because their outputs were close 
to the mean of 100 runs of the NN classifier algorithm for each group. The averaged NN 
performance for those 100 runs is shown in the form of confusion matrices in middle panel 
(Control versus LQTS) and the right panel (LQTS1 versus LQTS2) of figure 4. Classifiers 
based on sigmoid and polynomial fit based parameters included the Sig int and max loc 
parameter respectively, which are both related to the QT interval, so we did not include the 
conventional parameters in the sigmoid or polynomial fit based classifiers.

The classifier based on conventional parameters gave very good discrimination for control 
versus LQTS but discrimination between LQTS subtypes was not as good, with an average 
AUC value of 0.800  ±  0.009 (mean  ±  SEM). By comparison when we used just QT interval 
at 1.0 Hz (which is similar to the current clinical practice), we obtained AUC values of 0.82 
for control versus LQTS and 0.71 LQTS1 versus LQTS2. The classifiers based on sigmoid 
and polynomial parameters achieved a similar level of discrimination between control and 
LQTS as that seen for the classifier based on conventional parameters (p  =  0.19). However, 
the sigmoid and polynomial parameter based classifiers were both much better at discrimi-
nating between LQTS subtypes than with the conventional parameter based classifier (both 
p  <  0.0001). There was no significant difference between the ability of sigmoid parameter 
based classifier and polynomial parameter based classifier to discriminate between LQTS 
subtypes.

3.5. Analysis of LQTS genotype-positive patients with normal QT intervals

One of the more difficult problems in the management of suspected LQTS patients is how 
to determine which patients with a clinical history that sounds like cardiac syncope but 
who have a normal QT interval on their resting ECG, in fact might have LQTS. To investi-
gate whether our algorithms might help in identifying such patients, we utilized the above 
designed classifiers to analyze a sub group of patients who had a QT interval in the range 
of 400–450 ms on their average curves at 1 Hz central frequency. This included 67 controls, 
53 LQTS1 patients and 8 LQTS2 patients. Due to the small numbers of LQTS2 patients 
we only analyzed the groups as control versus LQTS, which is a better reflection of the 
likely clinical scenario where one does not know what genetic mutation the syndrome may 
be associated with.

Figure 5 shows distribution of conventional, sigmoid and polynomial parameters in 
patients with a normal QT interval (400–450 ms) at 1.0 Hz. QT interval was still slightly 

S A Immanuel et alPhysiol. Meas. 37 (2016) 1456



1466

Figure 4. Typical ROC curves (left panel) for classification of control versus LQTS 
(black) and LQTS1 versus LQTS2 (grey) and summary confusion matrices for 
classification of control versus LQTS (middle panel) and LQTS1 versus LQTS2 
(right panel) using parameters based on (a) all three conventional parameters at both 
1.0 and 1.3 Hz (b) parameters derived from sigmoid functions and (c) parameters 
derived from polynomial functions. Additional ROC curves in top left panel represents 
classification based on QT at 1 Hz alone (control versus LQTS—black dotted; LQTS1 
versus LQTS2—grey dotted). The average percentage classification accuracy from 100 
independent runs of each classifier are shown along the left diagonal of each confusion 
matrix, with the overall accuracy of classification shown as mean  ±  SEM in the right 
corner square.
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longer in the LQTS group compared to controls but there were no significant differ-
ence in Th or TpTe values. Tau1 (both 1 Hz and 1.3 Hz) and tau3 (1.3 Hz only) were 
significantly different between control and LQTS patients. U1, D0 and D1 were all sig-
nificantly different (p  <  0.01) between control and LQTS patients whereas U0 was not 
(see figure 5).

Example ROC curves and summary confusion matrices for classification of controls ver-
sus genotype-positive LQTS patients with normal QT intervals (400–450 ms) are shown in  
figure 6. The polynomial and sigmoid-based classifiers performed better than the conventional 
parameter based classifier with AUC values of 0.90  ±  0.01, 0.90  ±  0.01 and 0.80  ±  0.01 
respectively. Mean data for NN classifier accuracy confirms superiority of T-wave morph-
ology based classifiers but there was no significant difference between the sigmoid fit and 
polynomial fit based approaches. Classifier analysis for controls versus just LQTS1 subjects 
gave very similar results (data not shown).

Figure 5. Box (25–75%) and whisker (5–95%) plots for (a) conventional, (b) sigmoid 
fit and (c) polynomial fit parameters extracted from beats within 1 Hz and 1.3 Hz bins, 
shown for controls and LQTS subjects (restricted just to those subjects in both groups 
with QT interval in the range 400–450 ms at 1 Hz central frequency). Lines above box 
and whisker plots show statistical comparisons with ∗: p  <  0.01 and ∗∗: p  <  0.001.
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Figure 6. (a) Typical ROC curves for classification of control versus LQTS patients 
with QT interval in the range 400–450 ms curves at 1 Hz central frequency using QT at 
1 Hz alone (grey dotted), conventional (black dotted), sigmoid fit (grey) or polynomial 
fit (black) parameters. (b) Summary confusion matrices for classification of control 
versus LQTS patients with QT using conventional (b), sigmoid fit (c) or polynomial fit 
(d) parameters. The average percentage classification accuracy from 100 independent 
runs of each classifier are shown along the left diagonal of the confusion matrices, with 
the overall accuracy of classification shown as mean  ±  SEM in the right corner square.
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4. Discussion

Sudden cardiac death due to cardiac arrhythmias represents the final common end point of 
abnormal cardiac electrical activity (Wit and Janse 2001) and accounts for ~10% of deaths 
in the Western world. If we are to reduce the impact of sudden death we need better tools for 
screening and detection of patients at highest risk. The current paradigm for thinking about 
cardiac arrhythmias involves the concepts of (i) a substrate, which may be as complex as the 
scar tissue following multiple myocardial infarctions or as simple as a genetic mutation in a 
cardiac ion channel, (ii) dynamic factors that can modify the substrate, e.g. changes in adren-
ergic tone, changes in heart rate and (iii) a trigger that can initiate an arrhythmia if it occurs at 
a time when the dynamic substrate is conducive for maintenance of an arrhythmia. To improve 
our ability to stratify risk for lethal cardiac arrhythmias, we need biomarkers that can charac-
terise each of these three components (Hill et al 2016).

In this study, we have used LQTS as a proof of concept case for developing tools to charac-
terise pro-arrhythmic substrates. Whilst, measurement of the QT interval is well accepted as a 
standard clinical marker of repolarization and for diagnosing patients with congenital LQTS, 
there is a growing body of research suggesting that ECG derived markers based on the T 
wave morphology can provide additional useful information (Kanters et al 2004, Vaglio et al 
2008). In this study, we have developed automated routines for the analysis of T-wave morph-
ology (as well as conventional ECG parameters) in ECG waveforms derived from Holter 
ECG recordings and demonstrated that they can significantly enhance the detection of LQTS 
patients, even when they have a normal QT interval.

Our methodology was focussed towards a fully automated/computerized classification approach 
utilizing simple T wave slope based parameters applied to Holter data that provides a large set of 
beats in a range of heart rates. In addition to measuring the traditional features of the surface ECG, 
including QT interval, Th (amplitude of the T-wave), and TpTe (duration of the descending limb of 
the T-wave) we have analyzed the morphology of the upslope of the T-wave and down-slope of the 
T-wave by fitting them with Boltzmann sigmoid functions. Also as a novel approach, polynomial 
fitting of the T wave upslope and down slope has been included in our methodology. Parameters 
from both curve-fitting approaches were compared for their ability to discriminate between con-
trols and LQTS patients as well as between subtypes of LQTS syndrome. The polynomial and  
sigmoidal fitting parameters were comparable to each with both performing better than conven-
tional parameters in differentiating between LQTS1 and LQTS2 patients.

There has been great interest recently in trying to identify more accurate screening tools 
that could pick up more asymptomatic LQTS individuals. This is because, up to 25% of 
genotype positive LQTS patients have a normal QT interval (Goldenberg et  al 2011) and 
almost 50% of LQTS families are identified subsequent to the death of the proband case. 
Also, different subsets of LQTS patients have different clinical histories—e.g. many but not 
all LQTS1 patients have arrhythmias triggered by exercise, especially swimming, and many 
but not all LQTS2 have arrhythmias triggered by loud noise (Schwartz et al 2001). Our results 
demonstrate the possibility of discriminating LQTS subjects from healthy controls and also 
distinguishing LQTS patients by genotype using automatic methods that utilize simple meas-
ures based on T wave morphology. Especially, within subjects with QT in the normal range  
(400–450 ms at 1.0 Hz), the accuracy of distinguishing LQTS from control subjects was 
improved in classifiers based on curve fitting parameters than the ones based on conventional 
parameters. Between sigmoidal and polynomial fit based approaches, the performances were 
comparable. Our study shows that the use of simple measurements such as the upslope and 
downslopes of the T-wave provide good discrimination between both Control versus LQTS 
and LQTS1 versus LQTS2 subject groups.

S A Immanuel et alPhysiol. Meas. 37 (2016) 1456



1470

Several studies have performed morphological analysis of T waves in relation to diagnosis 
and classification of LQTS. These studies have used parameters ranging from simple tim-
ing components, relative slopes of upslope and downslope components (Couderc et al 2006, 
Kanters et al 2008), T-wave asymmetry (Struijk et al 2006), repolarization integrals (Kanters 
et  al 2004) to complex vector quantities like T wave loop dispersion (Vaglio et  al 2008). 
Approaches such as principal component analysis have also been used to study dynamics 
and complexity of ventricular repolarisation (Perkiomaki et al 2002) and in LQTS classifi-
cation (Dubois et  al 2012) using multi-lead ECG recordings. These previous studies have 
achieved comparable discriminatory power, to that reported here, when comparing control 
versus LQTS patients and for discriminating between LQTS1 and LQTS2 patients. Couderc 
et al (2006), also looked at controls versus LQTS2 patients with borderline QT prolongation 
(QTc in the range 390–470 ms) and were able to achieve 88% correct classification based 
on analysis of digitized resting ECGs. This is comparable to the 90% we achieved here (see  
figure 6) although in our analyses we only included patients with QTc between 400–450 ms 
and our cohort of LQTS patients with normal QT interval consisted primarily of LQTS1 
patients.

The long-term aim of our work is to develop automated tools that can enable more accurate 
quantification of risk for lethal cardiac arrhythmias. Our results to date represent progress in 
identifying biomarkers that can quantify pro-arrhythmic substrates. Beyond that however we 
still need to investigate how these biomarkers may be influenced by dynamic factors known 
to modify pro-arrhythmic substrate, e.g. changes in adrenergic tone and changes in heart rate. 
In this regard, we have already shown that many of the novel parameters studied here are 
influenced by heart rate when applied to waveforms averaged over several hundreds beats. We 
anticipate that similar changes will be observed when analysed on a beat-by-beat basis. This 
however will involve intense computational tasks. Nevertheless, numerous groups have started 
to develop sophisticated tools to analyse Holter ECG recordings for beat-to-beat dynamics 
of repolarization (Berger et al 1997, Zaunseder et al 2014, Baumert et al 2016, Page et al 
2016) and in the future we propose to combine these techniques with our novel biomarkers 
to investigate whether they provide more insights into the dynamic nature of pro-arrhythmic 
substrates in patients with LQTS.

4.1. Limitations

Despite the promising results in this study, there are also some important limitations that will 
need to be addressed before we can start to apply such techniques clinically. In this study, we 
have utilized a beat binning approach. This has the advantage of improving the signal-noise 
ratio by averaging multiple beats. However, following a change in heart rate it takes many 
beats before the QT interval and the T-wave morphology fully adapt to the new heart rate. As 
we did not differentiate between beats that occur against a background of an increasing heart 
rate or a decreasing heart rate our beat-binned averaged waveforms will be an approximation 
of a typical ECG waveform at that heart rate (Malik 2005). Whilst the improved signal to noise 
greatly facilitates the curve fitting process, it is likely that we will have missed some subtle 
features within each waveform. In addition we have not taken into account a number of con-
founding factors that could influence our results. For example, we have not taken into account, 
the influence of gender or age in our analyses (Surawicz and Parikh 2003), nor separated 
groups based on use of beta-blockers. The simple reason for this was lack of sample size. It is 
also possible that we may have introduced some bias in our patient selection as we eliminated 
patients with inverted T-waves and our ‘visual inspection’ criteria will have eliminated cases 
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that had the smallest amplitude T-waves. Thus it will be important to investigate whether the 
discriminatory power of our algorithms can be replicated in an independent cohort of patients. 
Despite these limitations, our results are very encouraging and confirm prior work demon-
strating the interest and utility of considering T-wave morphology in the analysis of the body 
surface ECGs from patients suspected of carrying LQTS mutations.

5. Conclusion

Analysis of T-wave morphology in frequency binned averaged ECG signals obtained from 
24 h Holter recordings can differentiate between genotype confirmed LQTS subtypes. Also, 
we can separate healthy controls and LQTS patients with normal QT intervals. The find-
ings support the claim that more intensive analysis of ECG phenotypes has the potential to 
identify and sub-stratify patients with pro-arrhythmic substrates. Feasibility of our approach 
provides an incentive to acquire larger cohorts and to further develop the technology to apply 
neural network classifiers as well as other approaches including machine learning approaches 
and principal component analysis on multi lead ECG data so that we can better discriminate 
between high and low risk patients.
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