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Abstract—As global healthcare systems transition into the
digital era, remote patient health monitoring will be widespread
through the use of inexpensive monitoring devices, such as
ECG patches, glucose monitors, etc. Once a sensor-concentrator-
cloudlet-cloud infrastructure is in place, it is not unrealistic to
imagine a scenario where a physician monitors 20-30 patients
remotely. Such an infrastructure will revolutionize clinical di-
agnostics and preventative medicine by allowing the doctors to
access long-term and real-time information, which cannot be
obtained from short-term in-hospital ECG recordings.

While the large amount of sensor data available to a physician
is incredibly valuable clinically, it is overwhelming in raw form.
In this paper, the data handling aspect of such a long term health
monitoring system is studied. Novel ways to record, aggregate,
and visualize this flood of sensory data in an intuitive manner
are introduced which allow a doctor to review days worth of
data in a matter of seconds. This system is one of the first
attempts to provide a tool that allows the visualization of long-
term monitoring data acquired from multiple sensors.

I. INTRODUCTION

Physicians assess a patient’s risk of cardiovascular diseases
(CVD) by referring to his/her clinical history and performing
highly observational and relatively insensitive physical exami-
nations and electrocardiograms (ECG) [1], [2]. The pathology
of CVD starts at earlier stages than it is observable by such
conventional methodologies and there are no clinical tests
that can detect the onset and progression of CVD. A highly-
automated remote (in-home) health monitoring of clinically-
relevant cardiac biomarkers could provide invaluable diagnos-
tic information. Eliminating the need to administer such tests
at the HCO could translate to substantial cost savings.

Currently, there are no suitable methods to assess and
predict the risk of CVD and chronic heart failure in real time
to enable effective therapeutic intervention [3]. Mechanisms
that are involved in the development of CVD are complex and
involve a variety of interrelated processes including changes
in blood cholesterol, lipid metabolism, inflammation and ox-
idative stress [4], [5]. Therefore, a comprehensive monitoring
system is required to effectively help clinical diagnostics.

The proposed system in Figure 1 will enable physicians to
monitor patients and have automatic alarm providing feedback
on patient long-term health status. This monitoring can be con-
tinuous in patients with high risk for life-threatening events,
or periodic with a recording frequency depending on disease
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Fig. 1: Remote long term patient monitoring system including i) data ac-
quisition, ii) data concentration, iii) data pre-processing, iv) cloud processing
and analytics, v) visualization, and vi) analytics-based diagnostic assistance.

severity. This system is capable of monitoring ECG-related
parameters using commercially available ECG patches [6],
[7], as well as multiple other bio-markers of a patient via
custom [8], [9] or off-the-shelf [10] bio-sensors in real-time.
Sensory recordings of the patient will be transmitted from the
patient’s house (or any remote location) to the datacenter of
the HCO in real-time in a secure fashion using well established
encryption mechanisms [11]. Combining ECG monitoring
parameters with such additional bio-markers improves the
utility of the monitoring system to far beyond what is cur-
rently achievable with ECG-only monitoring [12] or single-
biomarker monitoring (e.g., Glucose [10]). This technology
will be disruptive because it has the potential to shift the
paradigm of patient management in the US healthcare system.

Despite its potential to improve diagnostics substantially, the
proposed system introduces challenges in handling a massive
volume of data. Visualization of such multi-dimensional data,
encompassing ECG parameters and multiple bio-markers is
not straightforward. Well known century-old ECG-based visu-
alization of a patient’s cardiac operation [13] provides limited
information for a short operational interval. In this paper, a



new visualization mechanism will be developed that allows
the doctor to visualize ECG over >24 hours. Furthermore,
novel ways to aggregate the information from multi-modal
bio-sensors will be studied to improve the dimensionality
of the visualization. Our contributions are as follows: 1) A
system is described that automates and standardizes the pre-
processing of the sensed data, which will significantly improve
the diagnostic quality of the acquired data, 2) Each building
block of this system is studied in detail and the challenges
in constructing these blocks are identified, 3) A pilot cardio-
vascular monitoring application is selected and the analysis
is performed within the context of cardiovascular disease
monitoring, 4) The final step of visualization is studied in great
detail and a novel methodology is proposed for visualizing
uni-modal or multi-modal interrelated cardiac biomarkers in
real-time on a doctor’s smartphone.

The remainder of this paper is organized as follows: In
Section II, we provide a detailed description of the components
of the system. In Section III, details about the acquired long
term sensor data are provided. Based on this pre-processed
and summarized data, we provide a characterization approach
for well-described disease states in Section IV. In Section V,
we demonstrate novel visualization approaches to allow the
doctor to monitor multiple patients in real-time. We provide
conclusions and pointers for future work in Section VI.

II. THE SYSTEM

The system depicted in Figure 1 has four major components:
(1) the sensors on the patient, (2) gateway device(s) for
data aggregation and transmission, (3) the datacenter, and (4)
the doctor’s computer running frontend application(s). In this
section, we will discuss some of the important tasks that these
components must perform.

A. Data Acquisition and Data Privacy

Data Acquisition: The patient wears sensors that operate
from a small battery for up to a few months. The only task
of these sensors is to upload their data to the concentrator
through a low-power communication protocol (e.g., Zigbee),
thereby eliminating the necessity of a power-hungry processor.
They may cache data for a limited time if the concentrator
is out of range. Connection of sensors to microprocessors,
instrumentation systems and control networks has been stan-
dardized by the IEEE 1451 family, including common net-
work functions [14], wireless communication protocols [15],
transducers to Radio Frequency Identification (RFID) Systems
Communication Protocols [16] and several other functions.
Additionally, ISO IEEE 11073 personal health data standards
family is also available to use for medical device communi-
cations, including specifications for communications through
ECG monitoring [17], continuous glucose monitoring [18],
cardiovascular activity monitoring [19] and several other ap-
plications. Adopting these two standards [20] can ensure
interoperability through heterogeneous body sensors.

Privacy of the medical data (Layers-1-2-3): Although
personally-identifiable information can be removed before

communicating sensed data, aggregate disclosure attacks aim
at deducing information through pattern recognition methods
and context awareness [21], [22]. Random linear network
coding along with lightweight homomorphic encryption is
shown to be efficient to overcome malicious adversities via
network analysis in multi-hop wireless networks [23], but fully
homomorphic encryption is impractical [24], [25].

B. Data Aggregation

In the emerging Internet of Things (IoT) architectures [26], a
concentrator acts as a communication gateway for the sensors
and connects each sensor to the Internet [27]. These steps can
be achieved in a cost efficient and scalable manner if cloud
computing is integrated into the IoT architecture [28]. Remote
healthcare monitoring is reported to be an application domain
that can benefit from cloud-IoT integration [29]. The sensory
network infrastructure in this paper departs from this vision as
shown in Figure 1 by treating the bio-sensor array as a form of
an IoT infrastructure, where the HCO datacenter is a private
cloud, and the cloudlet in the patient’s house is a concentrator
(either the patient’s smartphone, or a dedicated cloudlet [30]).

Trustworthiness of Aggregated Data (Layer-1): In our
proposed system, multiple sensors are deployed in the same
region and mostly in the same transmission range. This
introduces resiliency issues to the sensory system where the
entire sensor network can fail requiring prompt intervention.
As the collected data from the sensory system is expected to
be correlated with any other indicator of cardiac status, off-
the-shelf heart monitoring systems [31], [32] can be integrated
into the proposed sensory system, and detect anomalies in the
biosensor signals through correlation analysis.

Context-aware concentration via smart devices (Layer-
1): Smartphones of the patient and/or the attendants can offer
ideal platforms to replace the concentrators in the Internet of
Things (IoT) infrastructure as current smart phones can use
both LTE and WiFi as the backhaul network. Aggregation
tasks can be handled either in a local cloudlet or in the
HCO’s datacenter. We propose context-aware concentration
of the data in the cloudlet (i.e., via WiFi connectivity) or in
the HCO datacenter (i.e., via LTE connectivity). The former
leads to one tenth of the latter’s access delay, half the power
of the latter’s power consumption and ten times the latter’s
throughput [33], [34]. The tasks on the aggregated data can be
partitioned between the cloudlet and the datacenter, however
this we propose context-aware partitioning of the data between
these two entities. Context will be defined as a function of the
current and expected status of the patient. In order to ensure
fast convergence and efficiency, the concentrator should adopt
the estimator algorithms applied to learning automata [35].

C. Data Preprocessing

Data arriving at this stage has already been consolidated
across sensors, and is parsable. There are a few steps to
complete, which are discussed in more detail in Section III.
Depending on the work required for each preprocessing stage,
this task may be split up across many devices.



D. Visualization Engine

This is the component responsible for producing human-
readable output from the preprocessed sensor information. The
doctor may be accessing this via a frontend on a desktop,
phone, or tablet, and the task distribution — to generate
visulization outputs after heavy computation — may need to
be adjusted accordingly. There are many challenges involved
in deciding what type of image is most useful for evaluation
or diagnosis of a specific patient; our approach to these
challenges is extensively discussed in Section V-A.

E. Analytics Engine

While a primary goal of this system is to provide a picture
of an individual’s health status to the doctor, this assistance
can be greatly improved by allowing comparison of the
individual to various groups (such as other people of the
same age or gender, taking the same medications). In order
to perform these comparisons, we need to develop “norms”
for different populations by utilizing existing databases (such
as the THEW [36] or PhysioNet [37] databases). This process
will be discussed in Section V-B.

III. PREPROCESSING OF SENSOR DATA

ECG data — amplitude, in mV — is typically sampled at
200Hz or 1000Hz, at 16 bits per sample. This amounts to
roughly 100MB of data per patient per day [38]. However,
an ECG recorder uses more than one sensor (i.e. lead), so
we must multiply by the number of leads. 3-lead ECGs are
common, meaning that a hospital monitoring 1000 patients
will generate 100+ GB of raw data per day. (Though, this is
usually compressible down to less than 40% of its original
size using a utility like zip. More specialized compression
algorithms may be used to take advantage of the specific data
structure of ECG to achieve higher compression rates).

A typical ECG waveform for one heartbeat is shown in
Figure 2. Each lead of the ECG monitor will capture between
about 100 and 1000 amplitude samples during a single beat.
What the doctor is interested in, though, are values like the
heart rate or the QT interval. There are roughly 20 such
measurements we may want to store for every heart beat, such
as the location of certain features in the QRS complex. These
annotations are stored in supplementary files or databases that
may very well occupy more space than the original recording.
Accordingly, the hospital may need to plan for a couple of
terabytes per day to cover their 1000 patients.

Now that we understand the form of the raw data, we
will summarize the preprocessing stages that convert it to
clinically-relevant information.

A. Stage I1: Raw Data — Primitives

The primitives will be extracted from the ECG recording,
resulting in a table like that of Figure 3. This process is
performed by a DSP algorithm, which, in the case of ECG
analysis, is typically based around wavelet transforms. The
computational complexity of this stage is an important factor
in determining where it should run; as alluded to Section II-C,
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Fig. 2: ECG waveform for one heart beat.

time lead feature amplitude
15:00:05.135 1 {P 0.15
15:00:05.150 2 {P 0.36
15:00:05.165 1 P 0.19
15:00:05.175 2 P 0.34
15:00:05.1%80 1 P) 0.15
15:00:05.185 2 P) 0.37
15:00:05.230 1 {Q 0.12
15:00:05.245 2 {Q 0.43
15:00:05.270 2 R 0.96
15:00:05.280 1 R 1.68
15:00:05.335 2 5) 0.32
15:00:05.340 1 5) 0.12
15:00:05.445 2 {T 0.57
15:00:05.540 2 T 0.69
15:00:05.560 1 {T 0.24
15:00:05.630 2 T) 0.55
15:00:05.640 1 T 0.42
15:00:05.715 1 T) 0.26
15:00:06.145 1 {P 0.04
15:00:06.170 1 P 0.12
15:00:06.170 2 {P 0.32
15:00:06.185 2 P 0.31
15:00:06.210 2 P) 0.31
15:00:06.215 1 P) 0.07
15:00:06.250 1 {Q 0.09
15:00:06.265 2 {Q 0.38
15:00:06.285 2 R 0.96
15:00:06.300 1 R 1.59
15:00:06.355 1 5) 0.06
15:00:06.355 2 5) 0.36
15:00:06.460 2 {T 0.55
15:00:06.555 2 T 0.66
15:00:06.575 1 {T 0.24
15:00:06.6530 2 T) 0.53
15:00:06.660 1 T 0.33
15:00:06.735 1 T) 0.14

Fig. 3: Approximately 2 seconds of annotation data from a 2-lead ECG.

there is a tradeoff between running it in the datacenter vs. on a
device nearer to the patient. The primitives for most interesting
ECG-based values are the locations and amplitudes at the start,
beginning, and end of the labeled features of Figure 2 (P, Q,
R, S, ).



B. Stage 2: Primitives — Clinical Markers

From the table in Figure 3, the distance between different
features can be computed. Many of these values (“segments”
or “intervals” in Figure 2) are good markers of potential
cardiac issues. We may also be interested in values computed
from intervals; heart rate in beats per minute, for example, is
%. RR is measured from R to R in consecutive beats.
IV. CHARACTERIZATION OF KNOWN DISEASE STATES

Though data is being collected from many sensors, only
a subset of the sensors (and measured parameters) will be
relevant to a particular disease. Since every added bio-marker
increases the cost and complexity of monitoring, we envision
a standardized system that allows the physicin to monitor only
a set of prescribed parameters.

A. Unimodal Monitoring

In some cases, a disease may be mainly characterized by
a single parameter. In those cases, we only need to provide
a single picture to the doctor, e.g. a plot of that parameter
vs. time, or some statistics about it. For example, to evaluate
whether a patient has Long QT Syndrome (LQTS) — ex-
plained in Section V — only two values need to be computed
from ECG sensors, QT and RR, as depicted in Figure 2. If
we have other sensor data for the same patient, e.g. from a
blood glucose monitor, this data is not relevant to the LQTS
evaluation. In order to use sensors for diagnostic purposes,
then, we need to know which sensors (and which parameters
from them) should be used for each specific test that the doctor
is trying to perform. In the case of LQTS, plotting the QTc
value (QT, corrected for heart rate) will be sufficient, since
there is a fairly clear relationship for a normal vs. long QTc
value. The corrected QT value is normally calculated from
the QT and RR values as follows [13], where 500ms is a
reasonable threshold which also depends on the patient:

B QT Normal : QT, < 500 ms
QT = YRRjsec | LQTS: QT.>500ms M

QTc monitoring is a unimodal (single bio-marker) type of
monitoring, since, although the QT and RR parameters were
used in the calculation of QTc in Equation 1, the system should
only display the QTc information to the doctor as QTc is the
only clinically relevant parameter in this case. For visualization
purposes, this is also the only parameter that matters.

B. Bimodal Monitoring

Certain diseases cannot be monitored accurately by visual-
izing only a single parameter. For example, when a patient is
on a drug named Tikosyn [39], (s)he has to be monitored for
potentially going into heart failure. For this, in addition to the
QTc value described previously, the heart rate (or equivalently,
RR) value must be visualized for irregularity. A patient that
is showing irregular heartbeats should be red-flagged by the
visualizer as a potential cardiac risk. Although this process
involves the plotting of two separate bio-markers (QTc and

RR), the heartrate itself (RR) is not really the parameter of
concern as much as its irregularity. It might suffice to plot the
irregularity as a single-bit Boolean value, such as a red dot
that is associated with each QTc value. From the standpoint of
data compression, this has the highest information ratio, but
requires a better algorithm to detect RR-irregularity.

C. Multi-modal Monitoring

To extend our discussion from the bimodal monitoring,
where a doctor monitors two bio-markers 1) RR-irregularity
and 2) QTc, now, let’s add a third crucial bio-marker: 3) BNP
levels (B-type Natriuretic Peptide). Since BNP level in the
blood is a clear indicator of a heart failure, this could serve
as a third parameter in the visualization. We assume that this
type of monitoring will involve some advanced bio-sensors in
addition to ECG sensors, as shown in Figure 1. BNP levels of
100900 pg/mL indicate degrees ranging anywhere from no
heart failure (100 pg/mL) to severe heart failure (900 pg/mL).

Strictly from the standpoint of data handling, we deduce that
BNP and QTc are parameters whose values must be shown
in a range, whereas RR can either be shown in a range, or
simply visualized as a Boolean value such as regular heartbeat
vs. irregular heartbeat for this specific monitoring. For BNP,
although the parameter range spans from 100-900, what really
matters is whether this value is above 300, denoting a cardiac
failure. In the case of QTc, a similar argument can be made,
where QTc values over 450 or 500 ms denote abnormal.

Since our goal is to provide this information to the doctor
in a highly-summarized, yet fully-informational visualization
mechanism, added parameters increase the complexity of
the visualization task, however, do not necessarily make the
visualization more difficult. The increased utility in providing
the actual value of BNP is not much more than providing the
BNP information in 4 different levels, e.g., by using 4 different
colors: <100 as green, the range 100-200 as yellow, 200-500
as orange and 500-900 as red. While this reduces the “data
burden” on the doctor expotentially, by practically reducing
the information to 2 bits (i.e., 4 levels), it barely reduces
the information content. In the following section, we will
develop novel methodologies for the visualization of multi-
modal monitoring results based on these concepts.

V. VISUALIZATION AND DECISION SUPPORT

Using the data in Figure 3, we can compute the clinical
markers such as RR. This allows us to look for problems that
the patient may be having. For example, if we want to know
how often the patient’s heart rate (HR) exceeded 90BPM, we
could query for cases where HR is > 90 and get an answer
almost instantly. This is an improvement on the current system
which may only provide min/average/max heart rates from an
entire ECG recording. However, we can improve this even
more by providing a view of the entire period (e.g. 24 hours)
without discarding information like a simple average does.

A. Visualizing long-term monitoring data

To illustrate a case where current visualization methods are
not ready for the oncoming flood of sensor data, we first focus
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Fig. 4: QTec (in seconds) over 24 hours. Top: healthy patient. Bottom: LQT2
patient. In this plot, colors are used to demarcate healthy (green), borderline
(yellow), and abnormal (red) QTc regions.

our attention on a specific example: detecting prolonged QT.
The QT interval is a duration that can be measured from
an ECG, and it indicates how long the heart’s ventricular
repolarization cycle takes. Prolonged QT is an important
marker for potentially fatal events [40], and subjects with
prolonged QT are said to have Long QT Syndrome (LQTS).
QT varies with heart rate, so it is usually corrected based on
the current heart rate [13]. The corrected QT (called QTc) is a
more stable value and is around 400ms in a healthy person, and
it may go up to 500ms or even higher with LQTS [41]. Long-
term monitoring of this (and other ECG features) is typically
done using a Holter monitor, a portable ECG recorder.
Assume that a cardiologist has 20 patients. Through con-
tinuous monitoring and automated data analysis, then, (s)he
has access to a table containing yesterday’s two million QTc
values. Obviously, information in this form can not be parsed
by a human. Currently, to condense the data into a meaningful
snapshot of a patient’s day, the doctor will manually spot-

check about 10 seconds of the patient’s ECG, and review the
computed average values of a full 24-hour recording. This
system throws away lots of key information; in the case of
LQTS, QTc could be prolonged for several minutes or even
hours without the doctor noticing the problem. There is a
clinical need for a better way to visualize the full data set.

We investigate plotting techniques than can display an entire
24-hour QTc data set in a single picture. Errors in detection
due to noise or other sensor issues are common, making naive
plots of this type incomprehensible. We will be using three
steps to generate plots containing all relevant information:
(1) Clean the data by using multiple sources, (2) Remove
remaining noise, and (3) Plot the data in a useful and intuitive
way. An ECG typically has between 2 and 12 leads. In
Step (1), we use the information from all available leads to
choose the “best” QTc value at each heart beat (operating
on the output of Stage 2 in Section III). In Step (2), the
“bad beats” due to sensor noise and hardware/software errors
are removed using a median filter. Finally, we observe that a
conventional 2D plot of QTc vs. time would “break” at the
ends of the plot. Because we expect a patient’s QTc to be
roughly the same at the start and end of a 24-hour recording,
it is convenient in Step (3) to plot QTc on polar axes, using
radius to indicate QTc and angle to indicate time of day. This
form also makes different times of day easily distinguishable.
Figure 4 demonstrates the result for two 24-hour data sets. If
a cardiologist had only looked at the second patient’s average
QTc (about 500ms), it would have obscured the the fact that
their QTc is around 570ms for several hours. The plot takes
minimal time to process, and is infinitely more useful than
a simple average. With a quick glance, the doctor sees not
only if a person is healthy, or if they have prolonged QT, but
when they have prolonged QT. While we have focused on this
QTc example and 24-hour observation periods, the process and
framework will be similar to monitor other medical markers
such as O, saturation or glucose levels, and over different
intervals.

B. Analytics-based decision support

The plots presented in Figure 4 have standard clinical
“warning” regions marked in yellow; 450ms is considered
prolonged QTc in men, 470ms is prolonged in women, and in
either case we indicate “danger” in red above 500ms. Green
indicates a typical range for healthy people. However, these
thresholds do not account for a patient’s age, prescriptions,
congenital disorders, for the time of day, or many other
factors. It is currently possible to build a database from drug
trials and other clinical data sets (such as the THEW [36]
or PhysioNet [37] databases), constructing a picture of the
“norm” for features like QTc within a particular group. As
more sensor data (with demographic information) becomes
available due to continuous monitoring, these reference ranges
will become very well defined for all populations. Figure 5
demonstrates the use of these dynamic reference ranges based
on QTc data extracted from the THEW database [36], which
can be used to eliminate fixed and overly-general thresholds



such as the static bands shown in Figure 4. We can compare
them to the expected values for their specific population by
dynamically adjusting the normal bands. Figure 5 shows how
a “normal band” around a 24-hour clock (one o about the
mean) can be created from the histogram data for a specific
group (e.g., healthy male patients). The plot demonstrates that
not all medical markers will be constant with time, e.g., we
cannot say that a patient’s QTc is normal without taking the
time of day into consideration.

Figure 5 (top) shows an LQT?2 patient with slightly elevated
QTc at night, which is not too unusual compared with other
LQT2 patients. In Figure 5 (bottom), we see another LQT2
patient with elevated nighttime QTc, which is a very extreme
case when compared with their peers, indicating a clear health
issue with this specific patient. We could augment these plots
further by highlighting areas of the clock where fatal events
tend to occur (again, based on hundred or thousands of records
for similar patients, not simply on a single static threshold).
Such customizations offer much more relevant information to
the doctor than any current tool.

The 24-hour plots can also be useful in diagnostics. If a
doctor suspects LQTS based on an ECG during a clinical
visit, one Holter recording plotted in this form can be used
to confirm it. There are many genes that can cause LQTS.
Extra QTc prolongation at night is characteristic of LQT2 or
LQT3, but not LQT1 [42]. From the plots alone, a cardiologist
therefore already has a good idea of the diagnosis for the
patients in Figure 5, possibly avoiding an expensive DNA test.
The same type of technique can be used in a decision support
system: We could attempt to classify/diagnose a patient by
matching their Holter recording with the normal ranges of
various groups (LQT1, LQT2, etc.), and the doctor can use
the picture to help confirm or reject the recommendation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described the building blocks of a system
that allows long-term patient monitoring. This system is works
with standardized protocols for transmitting the acquired sen-
sor data, such as IEEE 1451 and ISO IEEE 11073. The
components that make up this system are data acquisition,
data concentration and aggregation, data pre-processing, and
visualization. The primary contribution of this paper is the
introduction of a novel visualization mechanism that allows a
doctor to monitor multiple (e.g., 20-30) patients in real time.
Currently, physicians in even the leading US medical insti-
tutions use inefficient ECG-based visualization mechanisms:
a patient is either monitored for less than a minute through
ECG at the hospital, or monitored for 24 hours through Holter
devices, for which the summarized results are presented to
the physician. Either method has a high probability to miss
clinically relevant information related to patient health status.

We have demonstrated a simple way to visualize one factor,
QTc. Research is required to determine the best ways to
aggregate this heterogeneous sensor data into a clinically-
relevant summary for a specific patient and for specific ill-
nesses. This may involve multiple plots/tables, nonlinear axes,
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Fig. 5: QTc for two male LQT?2 subjects, superimposed on the normal ranges
for their peers. The bottom plot is the same recording as the bottom plot in
Figure 4. Note that the normal ranges in these two QTc plots are slightly
different because one of the patients is on beta blockers, which changes our
expectation for QTc (i.e., the dynamically drawn bands).

and/or methods to combine the information onto the same plot
(e.g. 3D views, or interactive animations). The result must take
only a few seconds for the doctor to review, without excluding
any key information. Another visualization challenge is finding
the best way to detect and highlight very short-duration events;
24-hr plots only allow us to see events that last for at least a
few minutes, which has insufficient accuracy in some cases.

We currently manage and process hundreds of Holter
recordings on a desktop computer. For simplicity, the results
are stored in SQLite databases. One research objective will
be to scale this to a proper cloud-based database backend
capable of handling larger data sets, and sources other than
ECG recordings. In parallel with this, we will create a means
to automatically update the group-specific statistics when new
records are added to the database.
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