
Quantification of postoperative atrial fibrillation by automatic
analysis of electrocardiograms

A study to find incidence and burden of early postoperative atrial fibrillation
after open chest surgical aortic valve replacement through an automatic

detection method.

MDO 2015
Enschede, 24-06-2015

Written by

M.J. Boonstra
K.G. van Leeuwen

F.M. Porte
F.L. Spijkerboer

Supervisors

N.M.S. de Groot MD PhD
L.M. van Loon MSc

ir. P. Knops
C.P. Teuwen MD



Abstract

Introduction New-onset postoperative atrial fibrillation (PoAF) is a common complication after
open heart aortic valve replacement with an incidence of 22-49%. The result thereof is a decrease
in the patient’s well-being and an increase in health care costs. The past decades research about
the PoAF episode incidence and burden has stagnated. Due to insufficient detection systems these
variables are not often registered, impeding research about correlating prognoses or causative factors.
In this study a method has been developed for automatic PoAF detection, which has been used to
examine the episode incidence and burden and the relation between these variables for patients
suffering from new-onset PoAF in the five days after open chest surgical aortic valve replacement.

Method and Results After initial data processing a combination of a Pan and Tompkins
algorithm for R-peak detection and an AF detection function made by Applied Biomedical Systems
BV was used to enable automatic AF detection for episodes of minimally 30 seconds. Validation of
this method demonstrated a sensitivity of 100% and specificity of 92.5%. For the population (n=18)
with a total registration time of 1590 hours the weighted mean incidence per 24 hours was 12.73
(±12.98) and the weighted mean burden ratio 0.105 (±0.168) within the six days after surgery. The
second postoperative day shows the highest episode incidence, though insignificant. The burden
remains fairly constant from the second until the fifth postoperative day. No correlation is observed
between incidence and burden.

Discussion As longer episodes have a different effect on severity of PoAF and prognosis, the
burden might be a new indicator for this. Limitations of this research consisted mainly of incomplete
and inconsistent data. For this reason, recommendations are being made about systematic recording
of ECGs and artifact handling. Further research could focus on investigating a larger population,
variation in episode length and correlation between PoAF episodes and hemodynamic factors.

Keywords PoAF; postoperative atrial fibrillation; incidence; burden; arrhythmia; AVR; aortic
valve replacement; ECG; electrocardiogram; AF detection; Pan and Tompkins.
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1

Introduction

1.1 Postoperative atrial fibrillation
A common treatment for aortic valve insufficiency is aortic valve replacement (AVR). This surgery
can cause several complications as stroke, a myocardial infarction or a cerebral infarction. [1] Es-
pecially new-onset postoperative atrial fibrillation (PoAF) occurs in 22-49% of the patient popula-
tion. [2–5]

The impaired systolic function of the atria, caused by atrial fibrillation (AF), leads to stasis and
gives rise to serious complications like thromboembolic diseases, stroke and heart failure. This re-
sults in increased morbidity and mortality and prolonged hospital stays. [2, 3, 6, 7] Even though the
consequences can be severe and extra costs associated can pass €8000 per patient, little is known
about the pathophysiology of PoAF. [8, 9]

Normally the heart contracts in the sinus rhythm which implies a regular heartbeat that only varies
slightly with respirations. In case of arrhythmias this sinus rhythm is disturbed. AF is characterized
by an irregular rhythm caused by spontaneous depolarizations throughout the atria. [10] The atrial
frequency rises up to 400-600 beats per minute resulting in a vibration of the atria which prevents
them from contracting. [11] These high frequent pulses are subsequently submitted to the AV-node
which passes on the signal in an irregular ventricular frequency between 75-175 beats per minute.
An example of an ECG of the sinus rhythm and AF rhythm can be seen in figure 1.1.

AF is being described in terms of incidence and burden. The incidence is the number of AF episodes
of at least 30 seconds that occur. [12] The highest incidence of PoAF episodes is observed on the
second and third postoperative day after AVR. [2, 8, 13, 14] The AF load experienced by patients is
defined as burden. This is defined as the ratio of total time a patient suffers from PoAF per unit of
time. A higher burden implies an increase in mortality, disability adjusted life style and healthcare
costs. [15, 16]
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(a) ECG with sinus rhythm
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(b) ECG with Atrial Fibrillation
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Figure 1.1: Example ECG signal with atrial fibrillation (a) and ECG signal with sinus
rhythm (b) in the same patient.

1.2 PoAF detection from ECG
To broaden the knowledge about the origin of PoAF, ECGs recorded at the Erasmus Medical Centre
(EMC) were analyzed to quantify burden and incidence. The time after surgery the patient’s ECG is
being monitored, first on the intensive care unit (ICU) and afterwards on medium care unit (MCU).
Currently, details about PoAF are generally not reported, because the PoAF is often intermittent
and therefore either not noticed by the medical staff or depreciated.

The data about the incidence and burden is rarely saved or analyzed for research, because detection
is complicated. Currently the ECGs are being analyzed semi automatically by medical specialists
and the algorithms of SynescopeTM (Sorin Group©), a multichannel Holter scanning software. Anal-
ysis is done by labeling the rhythm as normal (N), atrial fibrillation (AF), and annotating other
arrhythmia. This method is seen as the gold standard, but lacks efficiency and is time-consuming.

Automatic AF detection software is being applied in some clinical settings, mainly in implantable
devices. However, this software is not widely used for detection of AF in standard 12 lead ECG. This
is due to the fact that most detection software lacks specificity and therefore generates insufficient
accurate results. Additionally existing software struggles with processing real data because it often
contains periods of artifacts or missing data. Examples of these ECG characteristics can be seen in
figure 1.2.
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In this study an algorithm for automatic AF detection developed by Applied Biomedical Systems
B.V. [17] is used to generate a more efficient way of analyzing these sets of data. This software
is based on the irregularity of RR-intervals to detect AF. The variability and frequency of RR-
intervals is determined and compared to a basis rhythm defining whether AF is present or not. It
has a sensitivity of 93-100% and a specificity of around 94-95%. [18–20]

Figure 1.2: Examples of artifacts that can be found in the ECGs. (a) Shows a good quality ECG.
(b) Shows an inital flatline where no registration was made. (c) Shows how the signal can drop to
extreme values. (d) Shows extreme distortion.

1.3 PoAF Incidence and burden
AF can cause electric, contractile and structural remodeling in the atrial tissue. [21] During electric
remodeling the refractory period is significantly reduced. [6] The length of the P-wave is shortened
which allows more re-entering of wavelets in a shorter time which might increase sensitivity for
AF. [21, 22] If the duration of the AF episodes increases, recovery of the atria seems to takes more
time and a change in contractile function occurs. [21] These changes indicate a correlation between
the AF burden and the recovery of the atria, thus a higher vulnerability to AF and a higher episode
incidence. By this means the burden of AF could be a predisposing factor for the persistence of
PoAF as well as the risk for thromboembolic diseases. Boriani et al. [23] puts forward the importance
of analyzing the AF burden in order to get to know more about this risk.
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Many studies show a peak incidence of patients suffering from PoAF on the second and third
postoperative day. [2,8,13,14] However the episode incidence and burden patients suffer from post-
operatively have little been studied, as far as the research department of the EMC is concerned. [24]
Though the average burden and incidence are expected to follow the same pattern in time, this does
not necessarily mean that a higher burden implies a higher incidence or the contrary is true. For
example a low incidence can be associated with a high burden as the episodes are long lasting. As
for the relation between the incidence and burden no significant correlation has been found.

Due to the inconclusiveness about the origin of PoAF, the current treatment of PoAF is mainly
symptomatic instead of focused on prevention. When getting a better understanding of the causes
and risk factors associated with AF, focus of treatment can be shifted from symptomatic to preven-
tive.

Our method and results give a starting point for further research to discover correlations between
PoAF burden and predictive and prognostic factors. This will contribute to a broadening of the
knowledge about the underlying principle of the manifestation of AF. With a new automatic method
for the detection of PoAF it is easier to quantify incidence and burden, include this in the patient
status and use this information for research on PoAF.
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2

Method

2.1 Population
The study population (n=18, 12 male) exists of patients treated at the Erasmus Medical Centre
in Rotterdam who underwent an aortic valve replacement by open chest surgery. This study was
approved by the institutional medical ethical committee (MEC 2012-481). These patients have
had constant rhythm registration and suffered from postoperative atrial fibrillation during ICU and
MCU hospitalization. Excluded from this population were patients of whom more than one empty
or corrupted .ecg file per dataset was present or many overlapping files of rhythm registration were
available.

2.2 Data processing
A dataset of the population was made available by the department of Translational Electrophys-
iology of the Erasmus Medical Centre. To obtain this data, the EMC first registered the ECGs
of the patients with bedside monitors of Draeger InfinityTM and then saved these at a sampling
rate of 200 Hz as compromised compoz-files (.cpz) using the eData Taperec system. This data was
then converted to the standard Holter format supported by the International Society for Holter
and Noninvasive Electrocardiology (ISHNE), which creates an .ecg file. Subsequently the files were
decompressed by TapeRec creating different ISHNE (.ecg) files for each patient, labeled with the
name of the patient and hospital ward. The recordings were then split into pieces of no longer
than 24 hours, so the files were compatible with SynescopeTM and was organized by creating a sub-
folder for each patient containing the ISHNE files. These files were named following the structure
of Pt001 Name ICTH date 1.ecg. In this format, the dataset was made available for the research.

Processing and analyzing this data has been done in Matlab. Since Matlab has no built in tool
for reading ISHNE files a function provided by the Telemetric and Holter ECG Warehouse is used
to import the ECGs in Matlab 2015a. [25] The V2 lead has been selected as the channel to apply
analysis on, because it is most prominent. All operations executed on the dataset have been visu-
alised in figure 2.3 on page 14. All scripts used for further analysis are described in the Appendix
6.2.
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2.3 Detection of atrial fibrillation
2.3.1 RR intervals
To detect atrial fibrillation in the ISHNE files, the Matlab executable of MyDiagnostick firmware
v1.3.1, made and provided by Applied Biomedical Systems BV, has been used. The input of this
function are RR-intervals defined in samples of five milliseconds. To create the RR-interval array in
Matlab, the following methods have been analyzed and tested on accurateness, running time, and
artifact handling:

1. Matlab functions based on the detection algorithm designed by J. Pan and W.J. Tompkins
This algorithm is a real-time QRS detection which first preprocesses the ECG signal whereafter
QRS complexes can be detected. J. Pan and W.J. Tompkins stated this algorithm detects
99.3% of the QRS complexes correctly, when correctly implemented. [26] This algorithm is
widely used and implemented in Matlab, such as:

(a) A complete implementation in Matlab developed by H. Sedghamiz from the Linkoping
University
This implementation is very accurate but takes about half an hour per ISHNE file to
run on the available computers, implying that it will take about four hours per patient.
Furthermore, during the detection many errors occurred delaying the process.

(b) A simplified version of the Matlab function of H. Sedghamiz
This script is similar to the one described previously, it runs a little faster but is less
accurate.

(c) A complete implementation in Matlab developed by Applied Biomedical Systems BV.
R. Houben developed a script also based on the Pan and Tompkins algorithm. It has a
high sensitivity and specificity and takes less time than the Pan and Tompkins functions
stated above. After an alteration in the script it was also able to deal with the artifacts
better.

2. A Matlab script based on the function ‘find peaks’
This script, designed by ourselves, is based on finding peaks with a minimum height and a
minimum time difference between peaks. In comparison to the Pan and Tompkins method, the
accuracy is low, the running time about 5 to 10 minutes shorter per file and excluded artifacts
well.

3. Text files generated by SynescopeTM

The program SynescopeTM used by the Erasmus Medical Centre detects the RR-intervals and
a score is being given for every beat stating the type of rhythm. This data is manually checked
and altered by the medical specialists. Since this data was already generated, it was quick to
extract and import in Matlab. Artifacts were excluded due to the manual check.

In this research a RR-peak detection program based on the Pan-Tompkins algorithm is used to
extract the RR-interval arrays (option 1). This algorithm detects real-time QRS complexes by an-
alyzing slope, amplitude and width. When correctly implemented in Matlab, it detects 99,3% of
QRS complexes and makes use of a patient specific threshold and RR interval limit. This provides
an adaptive approach and thereby an accurate use on ECG signals with various morphologies. [26]
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From the three suboptions of option 1, option 1c is implemented and used in this analysis. This
script was the fastest of the Pan-Tompkins scripts to run, and after a small alteration worked well
in detecting the RR-peaks for the files of 24 hours.

The other options were not implemented due to their disadvantages. Option 2 was eliminated,
because it had little advantage over the other solutions, and was most prone to inaccurate RR-peak
detection. Option 3 appeared not be a possibility since the RR-intervals detected by SynescopeTM

were manually altered and therefore did not make the AF detection fully automatic.

2.3.2 AF score
To generate an AF score, an array of RR-intervals per 60 seconds is given as input for the AF
detection function of MyDiagnostick firmware v1.3.1 made by Applied Biomedical Systems BV [17].
The AF score is a value between 0 and 100 representing the likelihood for the presence of AF for
that minute. This tool has a sensitivity of 93-100% and a specificity of around 94-95% with a cutoff
value of 10. [18,20] We therefore assume that the results received by using this tool are valid.

After generating the AF score we turn an AF score between 0 and 9 into a 0 (no AF) and be-
tween 10 and 100 into a 1 (AF). This is visualised in figure 2.1. It is possible that some timeframes
do no contain (sufficient) data, these generate an AF score of -1, -2 or -3 depending on the type of
error. The definition of the AF scores can be seen in table 2.1.

Table 2.1: Meaning of the AF scores.
Explains the meaning of the AF scores given after implementing the
cutoff value of 10. The negative numbers are errors and indicate that
the AF score could not be calculated.

AF score Definition
0 Likelihood of AF 0-9
1 Likelihood of AF 10-100
-1 Error: Indices out of bounds
-2 Error: Less than 20 RR-intervals are given as input
-3 Error: No value as input
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(a) An example of AF score
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(b) An example of AF score, binary
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Figure 2.1: AF score before and after applying the cutoff value of 10, displayed by the red line in
(a), for which the AF score in (b) turns into either a 1 or 0. Negative numbers are errors and are
preserved. This example shows an incidence of 4 and burden of 0.53.

An AF episode has been defined as a period of 30 seconds in which AF occurs. [12] Therefore, it is
favorable to produce an AF score per 30 seconds instead of 60 seconds. In antiphase, two arrays of
AF scores have been generated per file. This means the first array generates an AF score for 0-60
seconds, 60-120 seconds, etc. and the second array for 30-90 seconds, 90-150, etc. Each AF score
in the array is being doubled to compile to a time array per 30 seconds. Then the two arrays are
combined, to one new array representing the implied AF score per 30 seconds, an example of this
can be seen in table 2.2).
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Table 2.2: Example AF score.
Array 1 and 2 represent a binary AFscore per
minute, doubled to match the time array (per 30
seconds). Subsequently combined to generate the
final AF score per 30 seconds.

Time Array1 Array2 Combined
17:52:19 0 0 0
17:52:49 0 0 0
17:53:19 0 1 1
17:53:49 1 1 1
17:54:19 1 1 1
17:54:49 1 1 1
17:55:19 1 1 1
17:55:49 1 1 1
17:56:19 1 1 1
17:56:49 1 0 1
17:57:19 0 0 0
17:57:49 0 -2 0
17:58:19 -2 -2 -2
17:58:49 -2 -2 -2
17:59:19 -2 -2 -2
17:59:49 -2 0 0
18:00:19 1 0 1
18:00:49 1 1 1
18:01:19 0 1 1
18:01:49 0 0 0
18:02:19 0 0 0

2.3.3 Artifacts
A good AF analysis of an ECG based on RR-intervals depends on an accurate detection of R-peaks.
A variation on the Pan and Tompkins algorithm was used to find these peaks. This algorithm makes
use of a patient specific range based on the minimum and maximal value present in the ECG. All
files contain artifacts during which the value of the ECG increases or decreases dramatically. This
means that a high presence of artifacts causes this range to be set at a very high level and only the
artifacts itself will be detected as R-peaks as can be seen in figure 2.2a.

To make sure artifacts will not affect the results, it is important to filter the data. In this study
the ECG files were plotted after which the minimum and maximum of the good quality signal was
observed and used as thresholds for the filter. All samples exceeding these thresholds were seen as
artifacts and set as 0. The thresholds were manually adjusted for each ECG. The result is shown in
figure 2.2b.
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(a) Before filtering
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(b) After filtering
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Figure 2.2: The Pan and Tompkins model has been applied to detect R-peak locations (red
asterisks) in the blue ECG. In (a) detection of low quality of an unfiltered ECG can be observed.
Figure (b) shows the same ECG in green with the filtered ECG in blue and high quality R-peak
detection.
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2.4 Incidence and burden
The generated text files containing the AF scores, could not yet be used for analysis. Firstly, the
starting time of the recordings is incongruent with the time of the end of the surgery, which is the
starting time of postoperative day 1. Secondly, files often contained overlap because new recordings
were made while other recordings still continued. This overlap needed to be excluded. To overcome
these difficulties, and be able to calculate the incidence and burden per day, 24 hours postopera-
tive, the files of the patients were revised. Firstly the files were merged automatically, so one text
file per patient was generated. These merged files were then edited manually. Data before the end
of surgery was excluded, as well as overlapping data. Finally these files were cut in parts of 24 hours.

To define the burden and incidence, these processed files were then imported in Matlab. Firstly, the
periods of which no AF score (-1, -2, and -3) was calculated, were deleted from the list. By doing
so, this data was neither taken into account for the total time as well as for the burden time which
causes the least information bias. Then the burden and incidence are calculated. The burden is
calculated by counting all ones and dividing it by the total time the AF score is recorded. Regarding
the incidence, every change from a 0 to a 1 in the list is counted as a new episode and adds up to
the incidence of the patient that day. Since the total time differs per day due to the variety in error
time or length of recording time, the incidence was normalized by turning it into a ratio of incidence
per 24 hours.

2.5 Statistics
Descriptive statistics have been performed on the incidence and burden in order to quantitatively
describe the data. The registration time differs per patient per day therefore standard means can
be biased. Hence all incidence and burden values are weighted with:

Weight = Registered time per patient

Total registered time of population

This way the burden of a patient with 24 hours of registration weighs three times more in the mean
than the burden of a patient of whom 8 hours of registration was available and bias is prevented.

To analyze the variance between the incidence and burden between different days, a univariate
general linear model analysis has been conducted in SPSS. This is a technique to analyse the vari-
ance for experiments with two or more factors: in this study the two variables and days. In this
analysis a pairwise comparison is favourable between the mean of different days.

The general linear model applied is the Tukey Honest Significant Difference Test (Tukey HSD or
Tukey), which combines a single step comparison procedure and a statistical test. With no equal
sample size over the different days, SPSS automatically implements the Tukey-Kramer test. [27,28]
It also assumes equal variation across observations, so repeated observations can be analyzed with
this procedure.
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The method calculates the studentized range statistic for each pair of days:
Mean Day(I) − Mean Day(J)

Standard Error

where I and J represent different days. The outcome states if means of different days significantly
differ from each other and compares all possible pairs.

To verify whether a correlation could be observed between the incidence and the burden, these
variables were visualized in a scatterplot. A quadrant analysis was performed on this scatterplot.

Figure 2.3: This flowchart describes how the data was processed throughout the different phases
of the method explained in this chapter.
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3

Results

3.1 Validation
In order to validate the used Matlab model, the MIT-BIH Atrial Fibrillation Database has been used.
This database contains ECGs, which were analyzed independently by two cardiologists and represent
the gold standard. Periods of sinus rhythm were annotated with ‘N)’ and periods containing AF,
annotated with ‘AFIB)’. The ECGs were downloaded from the database and loaded into Matlab.
The search for periods of AF in five MIT-BIH files of approximately an hour was done as described
for our data in the subsections 2.3.1 and 2.3.2. The results of this validation are shown in crosstable
3.1.

Table 3.1: Sensitivity and specificity analysis
The total amount of true and false positive and
true and false negative AF periods is shown
for five patients extracted from the MIT-BIH
database

AF (MIT) No AF (MIT)
AF (Matlab) 201 35
No AF (Matlab) 0 434

With these results the sensitivity and specificity of the used method was calculated. The outcomes
resulted in a sensitivity of 100% and specificity of 92.5%.

3.2 PoAF incidence and burden
After running a dataset of twenty-one patients, three were excluded, because of a non-existent
burden and incidence. An overview of the patients and their weighted incidence and burden over
the registered time is shown in figure 3.1 and table 6.1.
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Figure 3.1: Weighted mean incidence (blue bar) and burden (red bar) of each patient per day.



The boxplots in figure 3.2 show an extensive range in incidence and burden, meaning the data con-
tains many outliers. The median is present in the lower part of the box and lies far apart from the
mean. This implies that both incidence and burden are not normally distributed, which is confirmed
by the Kolmogorov–Smirnov test. By observing the boxplots it was verified that the data is rightly
skewed.
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(b) Boxplot burden

Figure 3.2: Boxplots of the outcomes plotted per day which show the data of the incidence
(a) and the burden (b). The asterisks are outliers, the box divisions the median.

The data was first analyzed by performing descriptive statistics. Means were calculated introducing
a weight factor based on the registration time of the patient contributing to the total registration
time of the population. Patients suffering from PoAF after AVR turned out to have a mean incidence
of 12.73 (±12.98) and a mean burden of 0.105 (±0.168) within the six days after surgery.

Figure 3.3 and 3.4 show the weighted mean and weighted standard error of the incidence and burden
per day. The population of the fifth day is smaller, making the results more vulnerable to bias. The
sixth day has been excluded from these graphs as the mean was based on only two patients with a
total of less than 19 hours of registration.

As can be seen in figure 3.3 the incidence on the second day shows a relatively high mean. The Tukey
HSD-test demonstrated no significant difference in incidence between days at a significance level of
0,05. Figure 3.4 indicates a moderate increase in the weighted mean burden over the postoperative
days. Neither the difference in burden over different days is significant.
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Figure 3.3: Weighted mean incidence of AF episodes of the population is shown for five
postoperative days with its weighted standard error. The number of patients of which
data was available is noted above each bar.
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Figure 3.4: Weighted mean burden of AF episodes of the population is shown for five
postoperative days with its weighted standard error. The number of patients of which
data was available is noted above each bar.
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3.3 Relationship between incidence and burden
In the scatterplot (figure 3.5) can be observed that no apparent relation between the distribution of
the data points, thus the variables incidence and burden exists. The data points are colored in order
to make distinction between different days. From this can be drawn that the points are distributed
randomly and independent from the day. Reference lines are drawn within the scatterplot on the
mean of the incidence and burden, dividing the plot into quadrants. It is evident that most of the
data points lie in the left bottom quadrant. Outliers can be observed in the left upper quadrant as
well as in the right upper and bottom quadrant. Because no pattern can be observed in the data
points a regression line could not be drawn.
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Figure 3.5: Correlation between the incidence and burden for
all days. Colors are used to distinguish between different days.
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4

Discussion

4.1 Validation method
The used method has been validated with the MIT-BIH database consisting of annotated ECG files
representing the gold standard. These example ECGs are short registrations of good quality, in
contrast to the dataset analyzed. The method of this study has therefore been validated for good
quality ECGs and not necessarily for a dataset containing artifacts and variance between patients.
In order to verify the accuracy of the method on coping with these artifacts and variances, the
output of this study has been compared to the output of SynescopeTM, however this has not been
quantified.

4.2 Incomplete data
Due to artifacts and differences in registration time, results were normalized. Despite the normal-
ization, the fact that data is incomplete implies that the actual incidence and burden the patient
suffered from could deviate from the results of this study.

4.3 Exclusion of data
After calculation of the burden and incidence it turned out that for three patients the inclusion
criteria were not met, since they did not suffer from PoAF. Therefore they were excluded from the
population. These patients were part of the dataset received from the EMC, which was supposed to
include solely patients that suffered from AF. There are three reasons this difference in AF diagnosis
can be attributed to. First of all, when comparing the output of SynescopeTM with the outcome
of this study, it was found that SynescopeTM annotated some flatlines of the ECG as AF episodes.
Secondly, the AF detected by SynescopeTM was in periods of less than 30 seconds. As AF is defined
as a period of AF for a duration of 30 seconds, these short episodes are not detected as AF by this
detection program. Last, the ECGs analyzed in this study excluded the part of the ECG registered
during surgery. It is possible the patient suffered from AF during surgery and has therefore been
included in the dataset of the EMC.
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4.4 ECG file size
With a sample frequency of 200Hz for 24 hours per file, we discovered that the processors available
to us were not optimal for the necessary analysis of these patient files. Loading these files into
Matlab and the detection of R-peaks were time-consuming processes. To make the detection of
R-peaks more efficient we tried to filter and resample the signal in Matlab. It is important to filter
the signal before resampling in case there is high frequent noise within the signal, since this can
disturb the signal if resampled. Calculation showed that a frequency of 25Hz should be sufficient
to detect all R-peaks. Taking aliasing into account, a frequency of 50Hz was chosen to perform
a trial on. One ECG file was filtered and resampled to compare the running time and quality of
output of R-peak detection with the original sample frequency of 200Hz. The processing time was
not much shorter and the detection of R-peaks was less accurate. By doing the alteration this way
the downsampling takes place after the ECG files have been loaded into Matlab. Yet this was a
time-consuming process as well. Alternatively the process can be fasten by saving the ECG signal
on a lower sample frequency. This way, the time of loading the files will already be reduced. This
method is only useful though if accurate R-peak detection can still be guaranteed.

4.5 Overlapping data
The ECG files contained inconsequent registration overlap. Currently the ECG files in the EMC
are saved containing a period of maximal 72 hours. However, before this maximum registration
time is reached, the next ECG recording is started, while the earlier registration continues to be
saved. Therefore many of the files overlap. To automate proper overlap removal is not easy, thus
this has now been done manually. It is recommended to change the way data is saved. The usage
and processing of the data would be easier and more efficient if the ECG recordings would be saved
automatically after a fixed period of time. Every ECG file would start at the time the previous file
ended with and this would prevent the overlap of data. The merging and cutting of the files would
then no longer be relevant which would save manual work and time.

4.6 Artifact filtering and R-peak detection
For accurate R-peak detection it is necessary to filter artifacts as explained in the Method. In
this study the thresholds for the filter were manually adjusted. For larger populations it would be
favourable to automate this step. A fourier transformation has been performed to find the specific
artifact frequency. A lowpass filter and high pass filter were applied to try to filter the artifacts,
however this did not provide a solution. Additionally the overall mean of the signal is being in-
fluenced too much by the artifacts to use as a factor for calculating thresholds. A solution was
found whereby six periods of 10 seconds are taken from the ECG file from which the minimum and
maximum value are saved in an array. Extreme values are excluded whereupon the average of these
minimum and maximum values is calculated and used to determine the threshold. This has not yet
been implemented in this study, but the method has been created and can be found in the Appendix
6.2 .
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5

Conclusion

The automatic detection method has provided new insight in the two variables burden and incidence
and their possible correlation. In the recent years only the incidence has been used to quantify PoAF.
But as the burden does not follow the same pattern as the incidence it might be a better variable to
define PoAF severity. As described in the introduction, AF can cause cardiac remodeling and longer
episodes seem to have a greater effect. [21] Taking this into account, the burden could be a more
reliable factor in the description of the correlation between AF, complications and prognoses. To
verify this, research on the burden on a larger population is recommended. To verify this, research
on the burden on a larger population is recommended.

At the moment, research is being done at the EMC to find out more about the origin of PoAF.
During surgery, mapping registrations are being performed. These registrations are supposed to be
a predictor for the development of PoAF. Automatic AF detection can be used to facilitate validation
of these results. Automatic detection of PoAF makes it easier to generate the values of incidence
and burden and can therefore be used to learn more about the correlation between these variables
and certain cardiovascular complications. When the method is optimalized, incidence and burden
can be included in the medical status of every patient and contribute to further research.

This research focused on the average burden per patient per day. Not only the average burden
per day, but also the variation in length of the episode may provide important information about
the chance of cardiac remodeling and the recurrence of AF.

The automatic detection method enables the detection of single PoAF episodes. This can be used
in further research in order to explore the potential influence of hemodynamic fluctuations on the
occurrence of such an AF episode. During an earlier phase of this research a method has been
designed to investigate this correlation.

Correlations between PoAF burden and predictive and prognostic factors can be found by per-
forming this further research and will provide additional information on parameters regarding the
origin and occurrence of AF.
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6

Appendix
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6.1 Population

Table 6.1: Patient Population
The patient population (n=18) which suffered from PoAF is described with the total registration
time, the incidence, the relative incidence and total burden and relative burden detected during this
time.

*Total time is described as the time registrations were available from the end of surgery
excluding the time errors occurred.

Patient nr.
n=18

Gender
m=12
f=6

Total time*
(hrs)

Total
Incidence

Relative
Incidence
(per 24 hrs)

Total Burden
(hrs)

Relative
Burden
(%)

Pt 005 m 71:20:30 31 10 1:40:30 2.35
Pt 006 f 90:49:30 77 20 3:48:00 4.18
Pt 013 f 87:31:00 3 1 0:03:30 0.07
Pt 015 m 107:27:00 159 36 15:11:30 14.14
Pt 017 f 92:08:00 11 3 0:26:00 0.47
Pt 018 m 94:51:00 15 4 24:15:00 25.57
Pt 021 m 109:23:30 66 14 73:19:30 67.03
Pt 041 m 85:22:30 23 6 0:33:30 0.65
Pt 044 f 77:22:30 16 5 0:39:30 0.85
Pt 072 f 90:55:00 2 1 0:02:00 0.04
Pt 077 m 89:49:00 133 36 15:22:00 17.11
Pt 085 m 90:59:30 3 1 0:03:30 0.06
Pt 086 m 90:32:30 3 1 13:04:30 14.44
Pt 087 m 82:50:30 25 7 0:48:00 0.97
Pt 089 f 70:38:00 83 28 2:02:00 2.88
Pt 093 m 91:00:00 1 0 0:01:00 0.02
Pt 094 m 90:41:30 105 28 5:06:30 5.63
Pt 104 m 77:38:00 104 32 11:46:00 15.16

Mean 88:24:25 48 13 9:20:42 9.53
Standard deviation 10:14:14 51 13 17:31:12 16.28
Standard error 12 3.1 4:07:46 3.84
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6.2 Overview Matlab scripts

Table 6.2: Matlab scripts
A contents list of the different Matlab scripts made and used for this study. The input is the filetype
needed to run the script and the output is what is generated after running the script. The column
‘Functions needed’ describes the additional functions that should be included in the path to enable
the running.

Functionality Input Output Functions
needed

1. R peak detection.m
This script will load the ECGs from a
specified path read them using the func-
tion ‘read ishne’ and detect the R-peak
using the fucntion ‘pantompkins’. The
output will be saved in the structure R
on the specified path.

ISHNE-file Structure R con-
taining information
about the R-peak

read ishne,
pantomp-
kins

2. R peak detection with auto threshold.m
This script does the same as
R peak detection.m, but automati-
cally calculates the thresholds for the
artifact filter.

ISHNE-file Structure R con-
taining information
about the R-peak

read ishne,
pantomp-
kins

3. AFscore calculation.m
This script starts with reading a part
of the ISHNE files so the information
needed can be read from the header. Af-
terwards the AFscore is calculated per
minute starting at t=0 s and also start-
ing at t=30 s. These are combined in
a table so an AFscore per 30 seconds is
generated.

ISHNE file and
accompany-
ing structure
containing the
R-peaks

A table containing
an AFscore per 30
seconds

subdir,
read ishne,
afdet.mexw64

4. Merging AFscores.m
This script was used to merge the dif-
ferent files containg AFscores to one file,
to be able to cut them up in days after-
wards.

Different files
of AFscores of
one patient

One text file con-
taining all the AFs-
cores of one patient

subdir

5. Cutting AFscores.m
This script can be used to cut the merged
files for each patient into file of 1440 lines
representing 24 hours.

AF score text
file per patient

Text file of AF score
per 24 hours

None
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