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An Evaluating Method for Autonomic Nerve Activity
by Means of Estimating the Consistency of Heart

Rate Variability and QT Variability
Yi Zhu, Xiaolin Yang, Zhigang Wang, and Yi Peng∗

Abstract—The imbalance of autonomic nervous system (ANS)
has a close relationship to cardiac mor tality. The noninvasive as-
sessment of ANS is of great impor tance and remains challenging.
A new method, character izing the consistency of shor t-term non-
linear indexes of hear t rate var iability (HRV) and QT var iabil-
ity (QTV), is proposed and validated. Holter records from two
databases in Telemetr ic and Holter ECG Warehouse were used, 43
records from one database (named ESRD) as typical subjects of
ANS dysfunction and 118 records from the other database (named
Normal) as normal controls. The consistency of HRV and QTV was
character ized by estimating mutual information (MI) of paired
shor t-term recurrence quantification analysis (RQA) indexes in
resting state. The influence of physiological differences on MIs of
paired RQA indexes in Normal was investigated as well. Results
showed that there were significant differences in MI-DET (day:
0.283 ± 0.070 versus 0.133 ± 0.055 and night: 0.258 ± 0.061 versus
0.117 ± 0.055) and MI-LAM (day: 0.439 ± 0.053 versus 0.293 ±
0.073 and night: 0.361 ± 0.079 versus 0.241 ± 0.087) between Nor-
mal and ESRD, much reduced consistency in ESRD. For MI-DET
in Normal, sex had no influence, and there was age related alterna-
tions by day but not at night. There was no influence of sex and age
on MI-LAM in Normal. The sensitivity, specificity, and total accu-
racy for discr iminating Normal and ESRD were 88.37% , 95.76% ,
and 93.79% , respectively. The proposed measures are shown to
have the advantage in reducing the influence of physiological dif-
ferences and highlighting the pathological influence, providing a
promising method to find clinical application for noninvasive as-
sessment of ANS state.

Index Terms—Autonomic nervous system (ANS), hear t rate var i-
ability (HRV), mutual information (MI), QT var iability (QTV),
recur rence quantification analysis (RQA).

I. INTRODUCTION

T HE autonomic nervous system (ANS), with its
sympathetic–parasympathetic interaction, plays a critical
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role in the physiological control of the heart. The autonomic
dysfunction, or the autonomic imbalance, has the possibility in
causing cardiac instability, arrhythmia, and heart failure [1], [2].
Since severe cardiac events might follow autonomic dysfunc-
tion, the assessment of ANS is of great importance and remains
challenging as well.

As known to all, the modulation of ANS to sinus node re-
sults in the dynamic changes of RR interval (RRI) and heart
rate variability (HRV). QT interval (QTI) is defined as the tem-
poral difference between the QRS complex onset and the T
wave end. In addition to its main dependence on RRI, QTI is
directly influenced by ANS and nonautonomic factors [3], [4].
The coupling of RRI and QTI, as well as HRV and QT vari-
ability (QTV), might change under different physiological and
pathological conditions. Porta et al. found that the RT variabil-
ity (a measure of QTV) and the amount unrelated to HRV and
respiration in RT variability increased with the magnitude of
the sympathetic drive directly related to tilt table inclination
in the head tilt-up experiment [5]. Baumert et al. [6] revealed
that the resting norepinephrine (NE) spillover into the coronary
sinus (the direct indicator of sympathetic activity) and QTV
index (QTVi) was significantly increased in essential hyperten-
sive patients compared with normotensive subjects. And the
elevated QTVi was due to the increase in QTV and the decrease
in HRV. Nahshoni et al. [7] showed that the patients after acute
myocardial infarction (AMI) had a significantly higher ventric-
ular repolarization and lower heart rate (HR) complexities than
the normal controls, using the measure of pointwise correlation
dimension (PD2). They attributed the decoupling of the com-
plex control between HR and ventricular repolarization to the
autonomic imbalance caused by AMI. The earlier studies sug-
gest that the coupling between the indexes of HRV and QTV
may contain valuable information on the assessment of ANS
state.

The analysis of HRV provides valuable information to assess
ANS [8], [9]. But HRV can be significantly affected not only
by many diseases but also physiological differences, such as
age, sex, and the period of measurement [10], [11]. Controls
in almost all the studies are selected as self-controls or those
with matched age, sex, and experimental time during a day,
making difficult to find clinical application. The same situation
exists in QTV analysis [12]. But there is certain consistency of
HRV and QTV indexes because of the main dependence of QTI
on RRI under normal resting state. Damage of ANS caused by
pathological state might decouple RRI and QTI, thus decreasing
the consistency of HRV and QTV indexes. We hypothesize that
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the abnormal autonomic function might result in greater changes
in the consistency of paired HRV and QTV indexes than those
caused by physiological differences.

We proposed a new method to quantify the consistency of
short-term nonlinear dynamic indexes of HRV and QTV by mu-
tual information (MI) estimation. The proposed method is ex-
pected to reduce the influence of physiological differences and
highlight the pathological state of ANS, evaluating ANS state
without specially selected normal controls. One important char-
acteristic of RRI and QTI variations is that their dynamics are
nonstationary and nonlinear [13]–[15]. Short-term recurrence
quantification analysis (RQA) [16], [17] provides the possi-
bility of analyzing the short-term series where the dynamics
are regarded as proximately stationary. And the consistency of
short-term nonlinear dynamic indexes is estimated by MI based
on the distribution of these indexes in long-term nonstationary
RRI and QTI series. The proposed method is evaluated using
the data in Telemetric and Holter ECG Warehouse (THEW,
http: //www. thew-project.org) [18]. Comparative study is per-
formed between two databases in THEW, one (named Normal)
contains Holter recordings of healthy subjects, and the other
(named ESRD) contains Holter recordings of end-stage renal
disease patients with high risk for cardiac arrhythmias and sud-
den cardiac death (SCD).

The enrollment criteria for ESRD are those hemodialysis pa-
tients with confirmed history of hypertension or diabetes requir-
ing treatment. Hemodialysis patients often experience a substan-
tial risk for abnormal autonomic function resulting in increased
risk for coronary disease (CAD) and SCD [19], [20]. Sympa-
thetic activity is increased in end-stage renal disease patients
from a direct effect of the diseased kidneys [21], [22]. More-
over, increased sympathetic activity is observed in patients with
hypertension or diabetes [6], [23]. So, the records in ESRD
provide us typical population with ANS dysfunction for the
comparison with normal people.

Instead of concerning only one kind of time-interval series
(such as HRV analysis), our proposed measures, estimating the
consistency of short-term HRV and QTV indexes, are shown
to reduce the influence of physiological differences and high-
light the influence of pathological states, providing a promising
method for noninvasive assessment of ANS for the evaluation
of cardiac safety.

II. METHODS

The flow diagram of our study is presented in Fig. 1. The
data for this analysis were based on Holter data of database
Normal and ESRD in THEW. For each Holter recording, 2-h
long-term episodes were extracted from day and night, respec-
tively. Measures of RQA and QTVi were calculated based on the
short-term RRI and QTI series extracted from the selected long-
term episodes. MI was estimated on the 2-D probability density
function (PDF) of paired short-term HRV and QTV RQA in-
dexes. And mean short-term QTVi (MQTVi) in each long-term
episode was calculated as well. Statistical analysis and discrim-
inant analysis were used to investigate the difference between
Normal and ESRD for the assessment of ANS state.

Fig. 1. Flow diagram of our study.

A. Data Source

Normal in THEW contains 24-h Holter recordings of 202
healthy subjects (E-HOL-03-0202-003, age ranging from 9 to
82 years), and ESRD contains 48-h Holter recordings of 51 end-
stage renal disease patients with high risk for cardiac arrhyth-
mias and SCD (E-HOL-12-0051-016, age greater than 40 years).
In addition to ECG data, beat annotations are available in both
databases.

With the exclusion of those incomplete records, 189 records
were left in Normal, and 43 records in ESRD using post
hemodialysis data. Since those at the age of 30 or more are
typical samples in need for ANS evaluation, for the 189 left
records in Normal, those who are no younger than 30 years
old were selected. Finally, we got 118 records in Normal for
analysis. For each selected record, two episodes in resting state
lasting 2 h were selected, one in the period of 7:00–20:00 (day)
and the other in 0:00–6:00 (night).

RRIs of the selected 2-h episodes were derived from the
beat annotations in the databases, while QTIs corresponding to
the selected episodes were obtained using a complex algorithm
[24]–[26]. Biorthogonal spline wavelet filters were used for the
P–Q junctions detection, then the T wave ends were detected
using a waveform-area algorithm independent of any thresh-
old. The complex algorithm was validated with the records in
Physionet QT Database (http://www.physionet.org/physiobank/
database/qtdb/). Ectopic beats were removed before further
analysis.

B. RQA

RQA characterized the dynamic properties by quantifying the
structure in a recurrence plot (RP), which is based on the analysis
of the trajectories under an appropriate reconstruction method
of the dynamics by the time delay-embedding method [27].

Five RQA indexes, Determinism (DET), Entropy (ENT), ε
under a given Recurrence Rate (REC), VMAX, and Laminarity
(LAM), are used in this paper.
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1) DET: DET is defined as the percentage of the recurrent
points that form upward diagonal line segments. The di-
agonal lines in an RP represent the dynamics repeating
themselves in the phase space:

DET =

� N
s= sm in

sPs(s)
� N

i ,j = 1 R(i , j )
× 100% (1)

where Ps(s) is the number of the diagonal line with the
length of s in the RP and sm in is the minimum length of the
diagonal line counted for the DET value. N = M − (m
− 1) τ ; M is the length of the data series under analysis;
m is the embedding dimension; and τ is the time delay.
R(i , j ) is an element in N × N binary array, i , j = 1,2,3,
. . .,N . Usually, R(i , j ) = 1, if point (i , j ) is a recurrence
point, R(i , j ) = 0, if point (i , j ) is a nonrecurrent point.

2) ENT: The Shannon information entrophy of all diagonal
line lengths distributed over integer bins in a histogram, a
measure of signal complexity

ENT = −
sm a x�

l= sm i n

p(l) ln p(l) (2)

where p(l) is the histogram estimation of the probability
distribution of the diagonal line at the length of l , sm a x is
the maximum length of the diagonal line in an RP.

3) Euclidean threshold ε under a given REC: REC is defined
as the density of the recurrent points in an RP, when ε is
given

REC =
1
N 2

N�

i ,j = 1

R(i , j ) × 100%. (3)

Thus, the euclidean threshold ε can be inversely calcu-
lated from a given REC and used as an output variable.
The ε calculated out by a given REC value representing
a dynamic range in which the specifically defined recur-
rences fall. Since this range is determined by the intrinsic
dynamic properties, it provides valuable data for the dy-
namic analysis. In this case, the REC is used to set up the
RQA. In this paper, we set up 2% as given REC.

4) VMAX: The length of longest vertical or horizontal struc-
ture in an RP.

5) LAM: The percentage of recurrent points comprising ver-
tical or horizontal line structures, a measure of relatively
“quiet” dynamics of the signal:

LAM =

� N
v= vm i n

vPv (v) +
� N
u= um i n

uPu (u)
� N

i ,j = 1 R(i , j )
× 100%

(4)
where Pv (v) is the histogram of the vertical line at the
length of v; Pu (u) is the histogram of the horizontal line
at the length of u; vm in is the minimum length of the
vertical line counted for the LAM value; and um in is the
minimum length of the horizontal line counted for the
LAM value.

In this paper, we set M = 100, m = 10, τ = 1, sm in =
vm in = um in = 2.

C. MI Calculation

MI [28] was used to measure the dependence of paired RQA
indexes of RRI and QTI.

If x denotes the measurement of a system X , and p(x) de-
notes the probability of x, the average amount of information
calculated from the measurement x is the entropy H of the
system X , and this is defined as follows:

H (X ) = −
n�

i = 1

p(xi ) log2 p(xi ). (5)

In a similar way, for a system Y , its entropy is defined as
follows:

H (Y ) = −
m�

j = 1

p(yj ) log2 p(yj ). (6)

According to the chain rule, for a general coupled system
(X ,Y ), I (X ,Y ) is expressed as follows:

I (X ,Y ) = H (X ) + H (Y ) − H (X Y ) (7)

where H (X ,Y ) is the entropy of the joint probability and is
defined as follows:

H (X Y ) = −
n�

i = 1

m�

j = 1

p(xi , yj ) log2 p(xi , yj ) (8)

where p(xi , yi ) is the joint probability of (xi , yi ). The I also
satisfies I (X ,Y ) = I (Y,X ). I is maximum if X = Y , and is
zero, if and only if X and Y are completely independent.

In this paper, the paired HRV and QTV RQA indexes are
input as X and Y . The MI of the two indexes represents the
dependence of two nonlinear dynamic properties.

According to the range from minimum to maximum values
of X and Y , each of the two is divided evenly into 2B inter-
vals. And the 2-D area formed by X and Y is divided into
22B blocks, each block can be labeled as (1, 1),(1, 2),. . .,(2,
1),. . .,(i , j ),. . .,(2B ,2B ), i , j = 1, 2,. . .,2B .

Then, 2-D PDF of X and Y for estimating joint probability
is expressed as follows:

p(xi , yj ) = n(i , j )/ n, (i , j = 1, 2, . . . , 2B ) (9)

where n is the length of X or Y .
The probability of xi and yj can be estimated as follows:

p(xi ) =
�

j

n(i , j )/ n = n(i )/ n (10)

p(yj ) =
�

i

n(i , j )/ n = n(j )/ n. (11)

Here, we choose B = 5, n = 2000. I values range from 0 to
2B , that is, from 0 to 10. MI is defined as normalized I value as
I /2B , so MI ranges from 0 to 1.

For each 2-h RRI series, 2000 short-term segments with a
length of 100 beats were randomly selected and the correspond-
ing QTI series were selected as well. Then, the short-term RQA
indexes were calculated and 2000 paired HRV and QTV indexes
were got to form a 2-D PDF. Finally, the consistency of paired
HRV and QTV indexes, represented by MI, were estimated
based on the 2-D PDF.
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TABLE I
MEASURES IN NORMAL AND ESRD

TABLE II
RESULTS OF ONE-WAY ANOVA WITH NEWMAN–KEULS MULTIPLE POST-TEST COMPARISONS FOR AGE GROUPS

In addition, 2000 short-term indexes of RRI were averaged as
the feature indexes (indicated as MDET-D: mean DET by day,
etc.) of this episode.

D. QTVi

QTVi [29] was determined with the following formula:

QTVi = log10[(QT v / QT 2
m )/ (RRv / RR2

m )]

= log10 (QTVN/ RRVN) (12)

where the numerator (QTVN) contains the variance of all QTIs
(QTv ) divided by the square of the mean QTI (QTm ). The de-
nominator (RRVN) contains the variance of RRIs (RRv ) divided
by the squared mean RRI (RRm ). For each 2-h period, a sliding
window with width of 100 beats was moved according to time
sequence. QTVi was calculated in each window. Indexes of each
sliding window within the episode were averaged as the feature
indexes (MQTVi) of this episode.

E. Statistical Analysis

Except for MQTVi, data are expressed as mean± SD. MQTVi
is expressed as median and interquartile range (75th–25th).
Mann–Whitney U test was used to compare the correspond-
ing measures in Normal and ESRD. In Normal, four age groups
were divided as 30–39, 40–49, 50–59, and ≥ 60 years. Mann–
Whitney U test was used to compare the MIs of male and female
in the same age group. One-way ANOVA with Newman–Keuls
multiple post-test comparisons was used to compare indexes
between the four age groups. Fisher linear discriminant analysis
and leave-one-out methods were employed for the classification

of Normal and ESRD as well as accuracy test. The statistical
analysis was performed using SPSS 19.0 (SPSS Inc., Chicago,
USA). Statistical significance was accepted at the level of P <
0.05.

III. RESULTS

Table I shows the measures in Normal and ESRD. There
were significant differences in RRI both by day and at night,
while significant difference only existed in day QTI. Significant
differences were found in MI values of DET (MI-DET) and
LAM (MI-LAM), while the MI values of ε (MI-ε) and ENT (MI-
ENT) were high both in Normal and ESRD with no significant
difference. And for the MI values of VMAX (MI-VMAX), low
correlation remains in Normal and ESRD with no significant
difference either. There existed significantly increased MQTVi
in ESRD compared with that in Normal.

For RRI, MI-DET and MI-LAM, which had significant dif-
ference between Normal and ESRD, there were no significant
differences between male and female. Concerning the measures
of RRI, MI-DET, and MI-LAM in Normal, results of one-way
ANOVA with Newman–Keuls multiple post-test comparisons
for four age groups are shown in Table II. There were no signif-
icant differences between four age groups in RRI and MI-LAM
both by day (RRI-D and MI-LAM-D) and at night (RRI-N and
MI-LAM-N). Also, there were no significant differences be-
tween four age groups in night MI-DET (MI-DET-N). But for
day MI-DET (MI-DET-D), significant differences existed be-
tween group 4 and any of other three groups.

Fig. 2 shows the box plots of MQTVi in Normal and ESRD.
Though there were significant differences for MQTVi in Normal
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Fig. 2. Box plots of MQTVi in Normal and ESRD. (In the box plots, the
central line represents the median distribution. Each box spans from 25th to
75th percentile points, and error bars extend from 10th to 90th percentile points.
D: by day and N: at night. # P < 0.05 Normal versus ESRD.)

and ESRD, the ranges of the two compared measures overlapped
a lot, leading to some difficulty in discriminating them two.
While as showed in Fig. 3, the means of corresponding measures
of Normal and ESRD (MI-DET and MI-LAM) were much apart
with small standard deviations as well. Moreover, in the same
figure, compared with corresponding MIs, normalized MDET
and MLAM displayed almost the same situation as MQTVi. So,
the discriminating power of Normal and ESRD could be much
improved using MIs of paired HRV and QTV RQA indexes.

Table III shows the results of Fisher linear discriminant anal-
ysis and the accuracy test. Let MI-DET-N, MI-LAM-N, and
RRI-N be input parameters, the sensitivity was 88.37%, the
specificity was 95.76%, and the total accuracy for discriminat-
ing Normal and ESRD was 93.79%.

IV. DISCUSSION

In this study, we proposed to assess the ANS state by charac-
terizing the consistency of HRV and QTV. Using the Holter data
in normal people and those patients with high risk for cardiac
arrhythmias and SCD, we found the significant difference of
them two in correlation of short-term HRV and QTV indexes
based on their distribution in long-term series. In addition, in
normal subjects, there exist MI measures on which the influence
of physiological differences (such as sex and age) is nonexistent.
The results of our study lead to much improvement of power to
discriminate the normal and ANS dysfunction.

Sympathetic activation, rather than being a consequence, is an
early event in the pathophysiology of chronic renal failure [30].
In 1992, Converse et al. reported that muscle sympathetic nerve
activity (MSNA), as assessed by microneurography, was in-
creased in patients undergoing hemodialysis [31]. And direct
measurement indexes of cardiac sympathetic activity suggested
that hypertension and diabetes are associated with increased
cardiac and vascular sympathetic activity as well as with an in-
creased risk for arrhythmia [12], [16], [22]. Moreover, Grassi
et al. found that MSNA values of patients with stable mod-
erate chronic renal failure and hypertension were significantly

and markedly greater than those only with hypertension, show-
ing that the double influence of renal failure and hypertension
would lead to higher risk of arrhythmia [32]. In addition, dif-
ferent direct measures of ANS activity confirmed the relation
of increased QTVi to pathological elevation of sympathetic ac-
tivity. Except for aforementioned Baumert’s work [6], Piccirillo
et al. provided direct evidence showing an association between
augmented sympathetic activity and the increased QTVi in dogs
with pacing-induced congestive heart failure [33]. In our study,
significantly elevated QTVi in ESRD compared with Normal
confirmed the abnormal ANS activity of the patients enrolled
in ESRD. So, the records in ESRD are expected to provide
us relatively typical population with ANS dysfunction for the
comparison with normal people.

The interrelated fractals and chaos are concepts of nonlinear
dynamics. Normal HR and QT dynamics are characterized by
chaotic behavior [13], especially in resting state. The interaction
of sympathetic and parasympathetic nervous systems is a main
factor determining HRV. There exists reciprocal changes in this
interaction, that is the activation of sympathetic nerve is accom-
panied by the withdrawal of parasympathetic nerve, and vice
versa [34], [35]. In Tulppo’s study based on a short-term fractal
scaling exponent analysis and direct MSNA measurement [36],
it was found that the loss or reduction of reciprocal changes,
represented by coactivation of sympathetic and vagal outflow,
resulted in changed fractal HR organization from chaotic toward
more random dynamics. In fact, reduction of reciprocal changes
is one of the reflections of pathological sympathetic activation.
In our study, the reduction of reciprocal changes was indicated
by sharp contrast of RRI between day and night in Normal and
much smaller contrast in ESRD, displaying much lower RRI on
night (insufficient sympathetic withdrawal when vagal outflow
should be predominant at night). MI-DET and MI-LAM mea-
sure the similarity in chaotic and relative “quite” characteristics
of RR and QT dynamics, respectively. For ESRD in our study,
elevated sympathetic activation (verified by the significantly in-
creased QTVi) in pathological situation is directly associated
with repolarization lability, resulting in less part of QTV driven
by HRV. In addition, the more random RRI and QTI dynamics
tended to decrease MI-DET and MI-LAM, measuring the cor-
relation of the dynamic characteristics of HR and QT dynamics.
For the similarity of complexity measured by MI-ENT, there is
decreasing trend but not significant, possibly due to the distinc-
tion in sensitivity of different measures. In our study on RQA
behavior during acute ischemia [17], we found that the changes
of ε (under the given REC of 2%) for paired RRI and QTI se-
ries were almost on the same proportion. The synchronization
of ε might give an explanation for the maintainability of high
MI-ε both in Normal and ESRD. The sensitivity of MI-ε un-
der different REC levels could be investigated in further study.
VMAX is an index concerning the line length in an RP plot. It
inclines to display more uncertainty in a short-term series (such
as 100 beats in this paper) than that in a long-term series. So,
MI-VMAX estimation tends to be low in Normal and remain
low in ESRD.

The linear discriminant analysis based on MI-DET-N, MI-
LAM-N, and RRI-N reaches the accuracy of 93.75%. Since the
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Fig. 3. Line charts of MI-DET, MI-LAM, normalized RRI, normalized MEDT, and normalized MLAM. (The central symbols represent the means. Error bars
span 2 SD. D: by day and N: at night. # P < 0.05 Normal versus ESRD.)

TABLE III
RESULTS OF FISHER LINEAR DISCRIMINANT ANALYSIS AND ACCURACY TEST

coefficient of variation (CV) of Normal is small and the means
of Normal and ESRD are apart far enough, there are only five
(out of 118) discriminating errors in Normal. While in ESRD,
differences in ANS damage might result in different degree of
changes in the consistency of MI-DET-N and MI-LAM-N, lead-
ing to higher (CV) in these two indexes than those in Normal.
The higher error rate for discrimination in ESRD, to a certain
extent, can be attributed to its higher CV. The inclusion of night
RRI for discriminant analysis is a reflection of autonomic im-
balance in ESRD. In ESRD, though the level of day RRI is
comparable to that in Normal, much smaller night RRI com-
pared with that in Normal indicated the reduction of reciprocal
changes in ANS, especially on night when parasympathetic ac-
tivity is prominent without sufficient sympathetic withdrawal.
QTVi, though normalized by both the QT duration and the mag-
nitude of HR fluctuations, is still influenced by physiological
differences [12]. Compared with the QTVi method, our pro-
posed measures, characterizing the consistency of HRV and
QTV estimated by MI, gain much improvement in discriminat-
ing power.

Our study is the first work, to our best knowledge, to explore
the possibility in evaluating the ANS state by characterizing
the consistency of QTV and HRV using MI of paired short-term
RQA indexes. Since the characteristics of nonstationarity reflect
the complex equilibrium control activities within ANS, the use
of short-term analysis in our study might provide valuable in-
formation in assessing ANS. Furthermore, through combining
HRV and QTV indexes, our proposed measures are expected to
reduce the influence of physiological difference and highlight

the influence of pathological states, providing more potential
to find clinical application. In addition, it provides a way to
make use of Holter data to investigate the distribution of short-
term indexes in long-term series, complying with the ubiquitous
nonstationarity of HR dynamics.

There are two limitations to this study. First, the data in
ESRD do not include the direct measures of sympathetic activity.
Though Holter is becoming more and more popular, there has
been no database including both Holter data and direct measure-
ment of ANS activity by now. As the aforementioned, elevated
sympathetic activity was proved based on direct measurement
in end-stage renal disease patients resulted from a direct effect
of the diseased kidneys, and increased sympathetic activity is
observed in patients with hypertension or diabetes. Moreover,
significantly increased QTVi in ESRD in our study is in accord
with the results in other studies in which elevated QTVi was
accompanied by direct measurement of augmented sympathetic
activity. We might regard database ESRD as a reasonable model
for ANS dysfunction. Second, the number of subjects in ESRD
was relatively low. Besides the enrollment criteria for ESRD,
its exclusion criteria are those with class I antiarrhythmic, pace-
maker, ICD device, cardiac resynchronization therapy device or
having a history of chronic atrial fibrillation. So the enrolled
patients in ESRD could be considered to be in the similar state
of ANS dysfunction, without other clear comorbidities and ex-
periences of severe arrhythmia. And this kind of population is
expected to be in need for cardiac risk assessment and drug
effect verification. However, a much larger database would be
needed for the validation of practical use.
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V. CONCLUSION

Our proposed method provides a new way to assess the ANS
state. Short-term RQA indexes are used to overcome the nonsta-
tionary interference on the quantification of nonlinear properties
in ECG time interval series. MI of paired HRV and QTV RQA
indexes, based on the distribution of short-term indexes in long-
term series, reflects the consistency of HRV and QTV indexes.
With the application to Normal and ESRD databases in THEW,
the results reveal the reduced consistency of HRV and QTV in-
dexes in typical population of ANS dysfunction. Furthermore,
our proposed measures are shown to have the advantage in re-
ducing the influence of physiological differences (such as sex
and age) and highlighting the pathological influence, providing
valuable information in noninvasive assessment of ANS state.
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