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Abstract

In this study, we propose a new algorithm to predict the out-

come of direct-current electric (DCE) cardioversion for atrial fibril-

lation (AF) patients. AF is the most common cardiac arrhythmia

and DCE cardioversion is a non-invasive treatment to end AF and

return the patient to sinus rhythm (SR). Unfortunately, there is a

high risk of AF recurrence in persistent AF patients; hence clinically

it is important to predict the DCE outcome in order to avoid the

procedure’s side e↵ects. This study develops a feature extraction and

classification framework to predict AF recurrence patients from the

underlying structure of atrial activity (AA). A multi-resolution sig-

nal decomposition technique, based on matching pursuit (MP), was

used to project the AA over a dictionary of wavelets. Seven novel

features were derived from the decompositions and were employed in

a quadratic discrimination analysis classification to predict the suc-

cess of post-DCE cardioversion in 40 patients with persistent AF. The
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proposed algorithm achieved 100% sensitivity and 95% specificity, in-

dicating that the proposed computational approach capture detailed

structural information about the underlying AA and could provide

reliable information for e↵ective management of AF.

1 Introduction

Atrial fibrillation (AF), the most common abnormal rhythm of the heart, is
associated with significant morbidity and mortality and increases the risk of
heart failure and stroke [1]. AF is the disorganized propagation of electrical
activity in the atrium that prevents organized contractions. As a result, the
atrial depolarization wavefront, the P-wave, measured during sinus rhythm
(SR) devolves into a series of fibrillatory waves in the surface electrocardio-
gram (ECG). AF is known to be progressive in nature [2,3]. The disease tends
to worsen over time and the resistance to therapy increases. Paroxysmal AF
is defined by self-terminating AF episodes that last no longer than seven
days. Persistent AF is defined by AF episodes which lasts longer than seven
days and typically requires medical intervention to be terminated. Lastly, if
AF is sustained for over a year and all attempts to eliminate AF fail, the
AF is defined as Permanent AF. Given the progressive nature of AF and
potential risks of di↵erent AF therapies, it is critical to identify if a given
therapy is e↵ective. This could provide invaluable information for e↵ective
management of AF.

There are a variety of treatment options for AF, including both pharmaco-
logical and electrical cardioversion and also surgical methods. Direct-current
electrical (DCE) cardioversion is one non-invasive treatment for AF that ap-
plies controlled transthoracic electrical shocks synchronized to the R-wave of
the patient [1] in order to end AF and return the patient to SR. The DCE
cardioversion treatment may be either immediately unsuccessful or there may
be a recurrence of AF in the following months, which means that AF cannot
be terminated using the DCE cardioversion therapy. It was reported that
this procedure is successful in around 80-100% of the patients; however, only
20-40% maintain SR within one year after the therapy [4]. Hence, a reliable
test that could accurately predict the likelihood of SR maintenance after
DCE cardioversion is important in order to weigh the benefits vs. potential
risks such as post-shock bradycardia, malignant ventricular arrhythmias, and
atrial thromboembolism [5]. Therefore, the objective of the present work is to
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develop a novel computational approach to analyze the electrocardiogram of
AF patients before application of DCE cardioversion and predict the success
of the therapy. Such a predictor could provide an important computer-aided
clinical decision support system for therapy management of AF patients.

Over the past decade, several studies have attempted clinical and electro-
physiological parameters to predict SR maintenance after DCE cardioversion
of AF [6–11]. A central notion in AF therapy management is that irregularity
of fibrillatory wave signals reflects the severity of the disease in an individual.
Thus, several studies measured organization of atrial activity (AA) from the
surface ECG as a measure of SR maintenance. Some of these algorithms
include fibrillatory rate [6, 12, 13], harmonic decay [6], and entropy [14, 15].
However, none of the existing methods has been used in the routine clinical
AF therapy management [16]. In the present study, we investigate AF orga-
nization beyond what has been performed in literature so far. Our method
studies both the morphology and frequency of the fibrillatory waves during
AF in an attempt to provide a strong and yet meaningful predictor for sinus
rhythm maintenance after electric cardioversion. We apply a signal decom-
position technique to examine the structure of AA at di↵erent decomposition
levels for the purpose of prediction of the outcome of the DCE cardioversion
in persistent AF.

A pre-processing technique is applied to extract the AA from the ECG.
The Matching Pursuit (MP) technique [17] is used to decompose the AA
signal into multi-resolution time-frequency (TF) decompositions. The MP
decomposition consists of a combination of wavelet atoms with two wavelet
types (i.e., Coiflet1 and Symlet2) and 6 scales (S0 to S5). We investigate the
type and scale of the wavelet types and scales that most accurately capture
the structural changes relevant to SR maintenance and propose seven new
MP features. Using a Quadratic Discriminant Analysis (QDA) classification
technique and leave-one-out cross-validation, we evaluate the developed MP
features on a database containing ECG from persistent patients who under-
went DCE cardioversion. Details of the algorithm are outlined in Section 2,
a validation of the features against clinical data and discussion is provided
in Section 3. The paper is concluded in Section 4.
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Figure 1: Overall outline of the study. Standard supervised learning approach
is applied consisting of a feature extraction step followed by a classification
step. Leave-one-out cross validation is used to evaluate the predictive power
of our technique.

2 Methods

The proposed method consists of three stages: (i) Pre-processing of the ECG
signal, (ii) Feature extraction and (iii) Classification and validation of the
extracted features against clinical outcome. Figure 1 depicts the overall
outline of the proposed method.

2.1 ECG Database

The ECG data [18] was obtained from 40 persistent AF patients who had
a successful external DCE cardioversion therapy. The study was approved
by the local Ethics Committee of the enrolling organization and complied
with the Declaration of Helsinki. Prior to cardioversion, a 10-minute 12-
lead ECG (f

s

= 1 kHz) was recorded for each patient. Twenty patients
had maintained SR (AF-Free) after 2 weeks follow up and 20 had a relapse
of AF (AF-Relapse). The clinical characteristics of the patients, including
medication and AF history are given in Table 1. The proposed analysis was
based on a single lead. Hence, we selected Lead V1, which has shown to
provide the best atrial signal [19]. The proposed algorithm was applied on a
10-second long ECG signal, which was selected from the 10-minute ECG as
explained in Section 2.2.

2.2 Pre-processing

The pre-processing stage is performed in three steps as follows.
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Table 1: Clinical characteristics of the study population with respect to
rhythm at follow-up

Variable AF-Free AF-Relapse p-value

Age 68± 7 69± 7 N.S.
Male 16 17 N.S.

AF Duration 128± 94 210± 94 N.S.
Other Heart Disease

Hypertension 6 7 N.S.
Ischemic Heart Disease 5 2 N.S.
Congestive Heart Failure 1 6 0.002

Valvular Disease 1 3 0.04
Left atrial diameter 49 ± 6 51 ± 6 N.S.

Cardioactive drugs
�-blocker 12 11 N.S.
Sotalol 3 3 N.S.

Class III antiarrhythmic agent 1 1 N.S.
Digitalis 2 7 0.05

Calcium channel blocker 3 5 N.S.

Noise and baseline wander removal: A bandpass filter with a cuto↵ fre-
quencies of 0.01 Hz and 50Hz was used to remove the noise and baseline
fluctuations in the ECG [20].

Segment selection: Following the baseline removal step, the segments
with a consistent QRST morphology are identified. In case of AF, it is
common that the ECG contains more than one QRST morphology, which
can increase the QRST residuals in the atrial activity extraction step and
dilute the quality of AA for the further analysis. Hence in this step we
identify the ECG segments that include steady QRST complexes. First, R-
wave fiducial markers are placed at points of maximum absolute derivative
on the QRST complexes. We construct a QRST template by averaging all of
the QRST complexes in the ECG. We then compute the correlation between
the QRST template and each beat, and identify the segments with more than
90% correlation coe�cient.

Atrial activity extraction: Several techniques have been used to cancel the
QRST complexes and obtain the AA from the ECG [21, 22]. In this study,
we employ the average beat subtraction method [23] which has been widely
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Figure 2: Illustrative example of an ECG waveform, the estimated QRST
complex, and the extracted AA signal with kortusis values of 10, 13 and
-0.45, respectively.

used in the literature. Using the QRST template that was computed in the
previous step, at each fiducial marker, we fit the QRST template to the ECG
and obtain the estimated QRST template from the ECG. Then, we subtract
the estimated QRST template from the ECG to obtain the estimated AA
signal. We evaluate the QRST removal by computing kurtosis as a measure
of the AA estimation quality [24]. Finally, for each record we select a 10
second long excerpt with the lowest kurtosis. Figure 2 illustrates the selected
segment for one of the records.

2.3 Feature Extraction

MP decomposition is applied to the extracted AA signal and the MP features
are extracted from the MP expansion coe�cients.

Matching pursuit decomposition: MP is an iterative signal decomposition
technique that expresses a signal x(t) as a linear combination of functions
selected from an overcomplete dictionary of TF basis functions [17]. The
algorithm has been successful in creating high-resolution TF representations
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of biomedical signals [25–27]. In this study, we apply the MP algorithm to
the AA signal obtained from the pre-processing step.

x(t) =
MX

m=1

b
m

A(Wm,Sm,TM )(t) +RM

x

(1)

In Eqn. 1, x(t) represents AA signal and A(Wm,Sm,TM )(t) is a wavelet with
type, scale and temporal location defined byW

m

, S
m

and T
m

, respectively. b
m

is the expansion coe�cient for A(Wm,Sm,TM )(t), M is the number of iterations
that are performed, and RM

x

is the residue of x(t) after M iterations. In Eqn.
1, the AA signal x(t) is projected onto an overcomplete dictionary of TF
functions with a combination of di↵erent wavelet types and scales. At each
iteration, the best correlated TF function is selected from the overcomplete
dictionary by finding the maximum inner product of the current residue
with each of the atoms in the dictionary (

���hRM

x

, A(Wm,Sm,TM )i
��� ). In the next

iteration the residue is decomposed according to the same rules. After M
iterations, the AA signal x(t) is expressed in the form of Eqn. 1 where the
first term on the right-hand side represents the decomposition of the original
signal by the selected TF functions, and the second term is the residue at
iteration M . For M large enough, it can be observed that the residue in Eqn.
1 becomes negligibly small.

There are three ways of stopping the iterative process of MP. The itera-
tions may proceed until: the energy of the residue is less than a threshold,
the value of the most recent expansion coe�cient is less than a threshold, or
the number of iterations reaches a pre-assigned maximum. In this study, we
used a combination of the last two stopping methods and determined a fixed
iteration number based on the average number of iterations required for the
expansion coe�cients to reach less than 5% of their initial value. Based on
this analysis, we found that after M = 1, 000 iterations, there is a negligible
change in the expansion coe�cients. Hence, we used M = 1, 000 as the fixed
stopping criterion. A plot of the expansion coe�cients for an AF-Free and
AF-Relapse example is shown in Figure 3A.

MP Dictionary: Two di↵erent wavelet types at six di↵erent scales (S0 to
S5) are used in this study: Coiflet1 (Coif1) and Symlet2 (Sym2). We build
a MP dictionary by pairing the two types of wavelets (i.e., W1 and W2).
Then the MP decomposition projects each AA signal over the combined
MP dictionary. We depict an example of AF-Free and AF-Relapse signal
along with the signal decompositions in Figure 4 A and B, respectively. The
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Figure 3: A. Plots showing the behavior of the MP coe�cients as a function
of iteration number. This representation was used to find an appropriate
number of iterations in our MP analysis. M was set equal to the average
number of iterations required for the coe�cients to reach less than 5% of
their initial value. B. The pvalues represent the statistical significance of the
normalized expansion coe�cient at each iteration. The vertical dashed lines
mark the significance thresholds of 0.05, 0.01, and 0.005.

plots on the left hand side show the reconstructed signals by combining the
components corresponding to Coif1 S0 and the right hand side plots show
the sum of the reconstructed signals related to MPF

Coif1,S3 , MPF
Coif1,S4 ,

MPF
Sym2,S3 , and MPF

Sym2,S4 .
MP Features: We performed the MP on each AA signal and obtained the

decomposed wavelets and scales given by A
Wm,Sm,Tm , m = 1, ...,M . Thirteen

MP features are extracted for each patient as are explained in this section.
However, only seven of these features contained a significant di↵erentiation
between the AF-Relapse and AF-Free data and were used in the final decision
making algorithm.

The first MP feature was based on the expansion coe�cient atM = 1, 000
iteration. As can be seen in Figure. 3A, we realized that AF-Free cases
present a faster decay rate compared to AF-Relapse cases. Such a behav-
ior was expected as it can be hypothesized that the AF-Free cases present
a more organized AA and are decomposed faster by the MP wavelets [28].
The AA signals from the AF-Relapse data contain more disorganized and
incoherent structure and have a slower decay rate. Thus, we use the normal-
ized expansion coe�cient (i.e., MPF

Residue

= bM
b1
) at M = 1, 000 iteration as

the MP feature representing the decomposition decay rate. The logarithm
of the normalized coe�cient expansion is taken to further spread out the
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A. AF-Free 
Coif1-S0 

B. AF-Relapse 

Coif1-S3,4 + Sym2-S3,4 

Coif1-S0 Coif1-S3,4 + Sym2-S3,4 

Original signal 
Reconstructed  

Figure 4: The reconstructed signals by MPF
Coif1,S0 and the combined recon-

structed signals by MPF
Coif1,S3 , MPF

Coif1,S4 , MPF
Sym2,S3 , and MPF

Sym2,S4

are displayed for an AF-Free (A) and AF-Relapse (B) case.
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data points. We performed an exploratory statistical test to investigate if
the expansion coe�cient at a smaller number of iteration (i.e., bm

b1
, where

m < M) was a more appropriate choice for the quantification of AA orga-
nization. Using the Mann-Whitney U test, we calculated the pvalue of the
normalized coe�cient expansion for m = 1 to m = 1, 000. As can be seen
in Figure 3B, the pvalue decreases as the iteration number increases. Any
normalized expansion coe�cient ( bm

b1
) with m >851 can achieve a significant

pvalue of <0.005.
The other twelve MP features are extracted based on the decomposition

results as follows. We build two matrices for each wavelet type (W1 and W2)
in a given dictionary: O

W1 and O
W2 . These matrices which are called the

Occupancy matrices are constructed as follows:

O
W1(i, j) =

(
1 if W

m

= W1
0 o.w.

O
W2(i, j) =

(
1 if W

m

= W2
0 o.w.

for m = 1, ...,M

(2)

whereW
m

represents the wavelet type with scale and temporal location of S
m

and T
m

, respectively, i = {0, .., 5} is the sacle value of S
m

, and j corresponds
to the temporal location T

m

. A graphical representation of this process is
shown in Figures 5 and 6 where two Occupancy matrices of O

W1 and O
W2

are plotted for an example of AF-Free and an example of AF-Relapse, re-
spectively. The plots display the analysis results of only 0.5 second of the
AA data for visualization purposes. The first six rows show the probability
of occupancy for Coif1 wavelets for scales S0 to S5, and the next six rows
show this information for the Sym2 wavelets. In this plot, each black circle
implies the presence of a decomposition at the given time and scale. Twelve
features are extracted from each dictionary by summing over time as follows:

MPF
W1,Si

=
X

j

O
W1(i, j)

MPF
W2,Si

=
X

j

O
W2(i, j) (3)

for i = 0, ..., 5

In Eqn. 3, we obtain the features as the total presence of a given wavelet
type and scale in an AA signal.
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Figure 5: A. The occupancy matrix is shown for a case of AF-Free. Each
black circle shows wherever there is a MP decomposition at a given time. The
y-axis indicates the corresponding wavelet type and scale of each MP decom-
position. B. The occupancy distribution is shown for each wavelet type and
scale. C. The corresponding AA segments for the occupancy matrix. Only
0.5 second duration of the data are shown here for visualization purposes.
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Figure 6: A. The occupancy matrix is shown for a case of AF-Relapse. Each
black circle shows wherever there is a MP decomposition at a given time. The
y-axis indicates the corresponding wavelet type and scale of each MP decom-
position. B. The occupancy distribution is shown for each wavelet type and
scale. C. The corresponding AA segments for the occupancy matrix. Only
0.5 second duration of the data are shown here for visualization purposes.
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MP Feature Selection: The MP features proposed in this study were eval-
uated using an exploratory statistical analysis. The purpose was to ensure
that any subsequent learning technique we applied to the data would not
be burdened by many irrelevant degrees of freedom. Thirteen MP features
are extracted for each AA signal. We select the MP features that show
a statistically significant correlation with the success of electric cardiover-
sion. The statistical significance is determined for each MP feature using the
Mann-Whitney U test, which is a non-parametric method for cases where
the probability distribution of the data is not normal. This test is used in
this study, because the MP features do not exhibit a Gaussian probability
distribution. The Mann-Whitney U test results showed a statistical signif-
icance for only seven MP features. The values of these significant features
are presented in Figure 7. The logarithm of the decay MP feature was taken
to further spread out the data points. Because this feature had a di↵erent
range than the other six features, it was shown in a separate plot. A total
of seven MP features that are selected here are used in the classification stage:
{MPF

Coif1,S0 ,MPF
Coif1,S3 ,MPF

Coif1,S4 ,MPF
Sym2,S2 ,MPF

Sym2,S3 ,MPF
Sym2,S4 ,MPF

Residue

}.

2.4 Classification

A label of 000 or 010 corresponding to the AF-Free and AF-Relapse cases, re-
spectively, was attached to each of the feature vectors derived from all of the
AA signals. The learning algorithm chosen for this study uses the quadratic
discriminant analysis (QDA) which separates the AF-Relapse and AF-Free
feature vectors by a quadratic surface. To evaluate the classification perfor-
mance, we used a leave-one-out cross-validation procedure where the data
of one patient was withheld in each trial. Hence, the classification proce-
dure is repeated in 40 trials corresponding to each of the patients and the
training sets consist of the feature vectors from the entire database with the
exception of the single patient withheld. The feature vectors from the pa-
tient under study are the test data. At every trial, the posterior probabilities
of the left-out data corresponding to the AF-Free and AF-Relapse classes
are recorded. A final receiver operating curve (ROC) is obtained using the
collected posterior probabilities after all the 40 trials is completed.
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AF-Free 
AF-Relapse 

MPFCoif1,S0 MPFCoif1,S3 MPFCoif1,S4 MPFSym2,S2 MPFSym2,S3 MPFSym2,S4 MPFResidue 

* 

* 

* 

Figure 7: The seven statistically significant features are shown in this plot.
?pvalue<0.005, †pvalue<0.01, and ‡pvalue<0.05.

3 Results

The proposed feature extraction and classification algorithm was applied to
the dataset described in Section 2.1. The ROC of the QDA and leave-one-out
cross-validation is shown in Figure 8. According to this analysis, Area Under
the Curve (AUC) is 0.97 , which is slightly higher than AUC of the linear
discriminant analysis (LDA) method, which is 0.94. The best sensitivity and
specificity values are 100% (20 out of 20) and 95% (19 out of 20), respectively.
Except one case in the AF-Free class, all the data are perfectly classified using
the novel features that are proposed in this manuscript.

3.1 Noise and QRST Residual

The pre-processing for the extraction of the AA signal is based on the average
beat subtraction where the segments with a single morphology and the least
QRST residuals are selected for the further analysis. It is common among AF
patients that the ECG signal contains more than a single QRST morphology,
which can result in extensive amount of QRST residue in the estimated

14



Figure 8: Receiver operating characteristic analysis of the QDA classification
scores using leave-one-out cross-validation. The AUC is 0.97 and the best
sensitivity and specificity are 100% and 95%, respectively.

AA signal. Another common problem is the changes in the QRST due to
respiration and mismatches in the alignment of the QRST template with
each QRST complex. In order to avoid computational artifact in the AA
signal, we employ a correlation-based analysis to only consider the data with
insignificant variability in the QRST complex. In our dataset, only 4 records
consisted of a single morphology (i.e., no beat with the correlation of less than
90% with the QRST template). The remaining records had 32± 30 (8.5% ±
7.6%) beats that showed a correlation coe�cient of less than 90% with the
QRST template. In total, 4.6± 2.0 ECG segments (66± 42 second long) were
selected for the AA extraction. Kurtosis was computed for each segment and
the 10 second long ECG that showed the least kurtosis value was selected
from each record. The average kurtosis value for the selected segments was
-0.80 ± 1.01. We repeated the feature extraction and classification algorithm
on randomly selected segments from each record (i.e., there was no constraint
on the QRST correlation and kurtosis). The performance of the algorithm
significantly dropped, which implies that selecting the noise and artifact free
segments is essential for the successful analysis of AA signals.
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3.2 Relationship of Wavelet Type and Cardioversion
Outcomes

Several observations can be made from the statistical analysis performed to
select the significant MP features. Scale 0 (S0) of the Coiflet1 wavelet and
Scale 2 (S2) of the Symlet2 wavelet model (i.e., decompose) the activations
in the AF-Free signals. This behavior can be seen in Figure 7 which shows
the elevated activities of MPF

Coif1,S0 and MPF
Sym2,S2 for the AF-Free data

compared to the AF-Relapse data. It can also be observed from the right
hand side plots in Figure 4 that the AF-Relapse signal contains more elevated
activations in the higher scales (i.e., S3 and S4) compared to the AF-Free
signal. This can also be seen in Figure 7 where AF-Relapse data presents a
higher activity at MPF

Coif1,S3 , MPF
Coif1,S4 , MPF

Sym2,S3 , and MPF
Sym2,S4 .

In addition, comparing Figures 5 and 6 one can see that the occupancy
matrix and distribution of the AF-Free signal is more concentrated at the
lower scales while the AF-Relapse signal demonstrates a wider distribution.
Hence, our observation is aligned with the literature [2, 29, 30] supporting
that worsening AF is associated with a more disorganized atrial signal in
the surface ECG. Our analysis suggests that the elevated activation of the
higher scale wavelets in the AF-Relapse cases may be used as a predictor of
disorganization and disturbances in AA signals.

3.3 Comparison with other Related Studies for AF
Progression

Table 2 lists results from a variety of previous studies proposed for the suc-
cessful prediction of DCE cardioversion. It is worth mentioning that the
results in this table were obtained using di↵erent datasets and the patient
population used is important in explaining the di↵erences among di↵erent
studies. However, one may conclude that the proposed method provides a
comparable if not better predictive capability compared to the other algo-
rithms.

We assessed the performance of the atrial frequency rate (AFR) on our
dataset as an important surface ECG statistic obtained during fibrillation.
Previous studies, such as [13] show that AFR is correlated with endocardial
measurements of cycle length. Moreover, as a measure of AA organization,
AFR is significantly associated with risk of recurrence after therapy. Elevated
AFR is generally understood to indicate a worsening of AF, perhaps associ-
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Table 2: Comparison of Signal Processing Methods
Method Study Size Significance Sensitivity Specificity

P-wave Duration 1997 [10] 35 0.001 73% 71%
Heart Rate Variability 2001 [31] 93 – 76% 90%

Fibrillatory Rate 2003 [32] 44 0.021 – –
Clustering of RR Intervals 2004 [33] 66 0.034 – –

P-wave Duration 2005 [34] 118 0.0001 72% 77%
P-wave Duration 2006 [8] 122493 0.02 90% 21%
Fibrillatory Rate 2006 [13] 175 0.0001 79% 80%
Fibrillatory Rate 2006 [6] 54 0.002 – –
Harmonic Decay 2006 [6] 54 0.0004 92% 47%
Sample Entropy 2006 [14] 66 0.02 – –

Wavelet Transform 2007 [35] 30 – 100% 89%
P-wave Dispersion 2011 [9] 26 0.001 86% 95%

Wavelet Sample Entropy 2008 [36] 40 – 95% 93%
Proposed MP-based method 2014 40 0.005 100% 95%

ated with the progression of the disease via electrical remodeling [37]. We
applied the AFR method to our dataset and found that the AFR was elevated
in patients who had a recurrence of AF at follow-up (p = 0.012) and resulted
in 58% and 75% sensitivity and specificity. Therefore, our analysis supported
the significance of AFR in predicting the successful DCE cardioversion; how-
ever, as it is evident from these results we need to combine the AFR with
some additional features in order to provide a successful aggregate score. For
example, in Figure 4 the AFR did not find a significant di↵erence between
the AF-Free and AF-Relapse signals with the calculated AFR of 6.5 Hz and
6.4 Hz, respectively; however, the proposed multi-resolution based technique
successfully di↵erentiated the two cases. This result may be explained by
the di↵erence between the structures of the two methods. The proposed
technique provides a distribution of the organization at di↵erent time and
frequency scales while AFR is bounded by the time and frequency resolution
of the Fourier Transform and can only provide the information about the
overall frequency content over a given length of the signal. The performance
of the proposed algorithm indicates that both the wavelet type and scale are
important in predicting the successful post-cardioversion patients. However,
a larger population is required to further assess the success of the proposed
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MP-based analysis in a future study.

4 Conclusion

In this study, we proposed a novel analysis for the structure of the atrial ac-
tivity to predict the success of DCE cardioversion AF therapy after 1 month
following the therapy. We developed novel features from MP decomposition,
performed a statistical evaluation and selected 7 significant MP features. The
extracted MP features were used in a quadratic discriminant analysis-based
classification to predict the outcome of DCE cardioversion in our database. A
leave-one-out evaluation demonstrated that our proposed algorithm provides
a promising non-invasive indicator of the outcome with 100% and 95% sensi-
tivity and specificity, respectively. Given the significant outcome, it may con-
cluded that our multiresolution-based signal decomposition technique yields
novel insights into organization of the atrial activations that could improve
the prediction of the successful post-cardioversion patients. Further studies
on wider databases could determine the reliability of the proposed compu-
tational approach as a new computer-aided clinical decision support system
that could successfully predict the outcome of DCE cardioversion and may
potentially guide the care of AF patients.
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