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Portable medical devices generate volumes of data that 

could be useful in identifying health risks. The proposed 

method filters patients’ electrocardiograms (ECGs) and 

applies machine-learning classifiers to identify cardiac 

health risks and estimate severity. The authors present 

the results of applying their method in a case study.

As personalized medicine becomes increas-
ingly more sophisticated and affordable, 
portable medical devices have become ubiq-
uitous and monitoring applications have 

begun to blend a range of functions. AliveCor, for exam-
ple, offers an inexpensive smartphone electrocardio-
gram (ECG) attachment that can sample an individual’s 
ECG, calculate real-time statistics, and share the record-
ing with a physician.

In aggregate, portable medical devices generate data 
at a much higher rate than conventional systems, which 
can overwhelm medical personnel who must review 
reports for many patients. However, the data also pres-
ents scientists and engineers with the opportunity to 
create health-monitoring and decision-support systems 
that enhance and personalize healthcare. For example, 

decision-support systems based on machine learning 
(ML) can ease the review burden by filtering noise, errors, 
and irrelevant information so that the data reviewed 
contains only relevant clinical markers. ML algorithms 
learn patterns within the data, which serve as the basis 
for predictions about patient health. A machine can look 
through millions of reports and medical records to iden-
tify previously unknown drug interactions.1 Such algo-
rithms can significantly improve diagnostic accuracy, 
healthcare quality, and patients’ quality of life.

ML algorithms have many potential applications in 
smart health. To explore one of these, we developed a 
method that filters data from long-term ECG recordings 
of patients with Long QT Syndrome (LQTS), uses ML to 
identify circadian patterns that signal risk of symp-
toms such as cardiac arrhythmia, and estimates the 
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severity of that risk. LQTS is a disor-
der that primarily affects ion chan-
nels in heart muscle cells, allowing 
abnormal electrical activity to occur 
that can lead to sudden and dangerous 
arrhythmias. We tested our method 
using four classification methods 
against a database of 434 24-hour ECG 
recordings. We also explored how our 
method might scale with the volume 
of medical data. Scalability is rapidly 
becoming critical in medical studies. 
Analyzing massive amounts of data 
not only promotes a deeper under-
standing of the mechanisms that 
cause diseases but also makes per-
sonalized treatment possible. Such 
analyses can lead to breakthroughs 
in relating genes to diseases as well as 
providing the basis for treatment ori-
ented to a particular patient’s lifestyle 
and genetic makeup.

AN ML-BASED SYSTEM
We envision incorporating our method 
in a remote health- monitoring system 
that can provide feedback and decision 
support to a clinician. The system would 
use devices that acquire data through 
the Internet of Things and are connected 
to a cloud-based decision-support sys-
tem.2 The technological components 
of such a system are within reach, and 
advanced devices for acquiring medical 
data are becoming commercially avail-
able.3 Sophisticated and powerful ML 
algorithms are already well understood 
and accessible.4

However, the human brain has 
unmatched reasoning abilities, so the 
physician is still the most important 
part of any medical decision- support 
system. Thus, the goal of our envisioned 
system is to provide physicians or other 
clinicians with concise, relevant infor-
mation that can increase their diagnos-
tic efficiency and accuracy.

Work flow
Figure 1 is a conceptual diagram of 
the workflow for a healthcare system 
that stores patient data electroni-
cally. After preprocessing and filter-
ing patient data, the system stores it 
as an electronic health record (EHR). 
Each EHR gradually enriches the data-
base, which will improve the accuracy 
of future ML results. A large database 
with many patients’ records might not 
be as useful as a database with fewer 
patients but more information on 
each patient.

When many patients’ records are 
aggregated and analyzed, steps must 
be taken to protect the individuals’ 
privacy. Most protected health infor-
mation (PHI), such as names and birth-
days, can be removed from records in 
compliance with the Health Insurance 
Portability and Accountability Act 
(HIPAA) without detriment to the data 
mining process.5 However, in some 

cases, it would be desirable to obtain 
more detailed information about cer-
tain patients from their physicians—
an impossibility because it would 
violate HIPAA. Consequently, regula-
tion, not just technology, can limit the 
acquisition of needed data.

Even after removing identifying 
information, what remains could 
be combined to statistically reveal a 
patient’s identity. On one hand, PHI 
information such as age, gender, 
race, and genetic disorders, is critical 
to developing an effective decision- 
support system. On the other, includ-
ing too much information on the 
wrong computer system risks violat-
ing HIPAA. Applications can also cre-
ate privacy violations because some 
require explicitly protected informa-
tion such as a patient’s voice print6 or 
city of residence. Researchers must 
keep these restrictions in mind during 
all stages of a study.
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FIGURE 1. Conceptual workflow of a remote health-monitoring and decision-support 
system. Data from a patient at a remote location is acquired, preprocessed, and used to 
provide decision support in several forms. Visualization provides simple summaries to 
the physician or other clinician without any recommendations. Alerts are triggered by 
more urgent events, such as the violation of an established threshold. Classification of 
the patient’s condition is based on the results of machine learning (ML), which involves 
comparing the patient to existing electronic health records (EHRs). AMI: acute myocardial 
infarction; Q, R, S, T: waves that indicate cardiac electrical state (on an electrocardiogram 
[ECG]); QT, RR, QTc, and ST: intervals in the cardiac electrical cycle, also measured on an 
ECG; TdP: torsades de pointes, a cardiac arrhythmia.
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Decision support
An effective ML-based healthcare 
system capitalizes on the computer’s 
vast computational capability and the 
physician’s reasoning ability. Both 
machine and physician are looking for 
patterns, but the physician cannot ana-
lyze every heartbeat of every patient 
or be familiar with every disease’s 
nuances. The machine can do all these 
tasks and then present its conclusions 
to the physician for confirmation.

Support types. As Figure 1 shows (see 
box at lower right), we envision three 
types of decision support: visualiza-
tion, alerts, and classification. 

Visualization puts long-term mon-
itoring data in a concise and intuitive 
format,7 which could significantly 
reduce the physician’s data burden 
and enable timely and accurate deci-
sion making.

Alerts are alarms that activate when 
a value crosses an established thresh-
old. The value can be simple to check, 
or the result of a more advanced algo-
rithm. The threshold could be a clini-
cal standard—for example, 480 ms for 
QTc, which is a measure of the ventric-
ular depolarization and repolarization 
duration—      or it could be tailored to a 
patient. For example, the physician 
might want to be notified only if a par-
ticular patient’s QTc exceeds 600 ms.

Classification is the process of pre-
dicting the group a patient belongs in, 
such as people with a specific geno-
type or people at risk for certain car-
diac events. Prediction of short-term 
outcomes is a primary goal. For exam-
ple, the machine might predict that a 
patient is at high risk for a myocardial 
infarction in the next 12 hours.

The outputs from these support 
systems, such as plots and recom-
mendations, would be attached to the 

typical ECG report that a cardiologist 
reviews. When real-time monitor-
ing reveals an urgent issue, an alert 
would immediately be sent to both the 
patient and physician through SMS, 
pager, or an application.

Evolving symbiosis. The physician 
is still at the head of this process— 
ordering tests, analyzing records, 
adjusting prescriptions, and so on. 
The machine’s visualizations and 
recommendations are simply addi-
tional decision- making tools. Over 
time, the database will expand, and 
the machine’s classifications will be 
more accurate. But improvements will 
be symbiotic: as the machine’s accu-
racy grows, the physician will develop 
an intuition for how and when the 
machine makes those accurate classifi-
cations and recognize when it might be 
fallible. For example, a patient might 
have an abnormal T-wave morphology 
that the algorithms did not process 
correctly, or a patient’s heart rate had 
not reached the point at which prob-
lems would be identifiable. The physi-
cian can recognize the machine’s lim-
itations, and might opt for additional 
methods to measure risk such as pre-
scribing a drug or exercise challenge or 
conducting a manual ECG analysis.

CASE STUDY PARAMETERS
In a case study to evaluate our method, 
we exploited ML’s pattern- recognition 
abilities to classify risk in LQTS 
patients. The QT interval, which is typ-
ically used to measure the duration of 
ventricular repolarization (a clinical 
marker of the heart’s electrical activ-
ity), can be abnormally long in some 
people who are taking certain medi-
cations or have certain genetic disor-
ders.8 A prolonged QT interval can trig-
ger arrhythmias such as torsades de 

pointes (TdP), which are likely to cause 
serious symptoms such as seizures, 
fainting, or sudden death. It is there-
fore critical to monitor the QT inter-
val in patients prone to this disorder 
using long-term ECG recordings. Data 
recordings of ambulatory patients over 
several hours or days are called Holter 
recordings or simply Holters.

Our study focused on congenital 
LQTS rather than the drug-induced 
form. In the database used for the 
study, we knew which recordings were 
from patients with symptoms, but we 
did not know if the symptoms came 
before or after the ECG recording. Con-
sequently, we had no way to use ML to 
predict when symptoms would occur 
or to detect symptoms in real time. 
Instead, we attempted to identify when 
a recording came from a patient whom 
we knew had symptoms in the past 
or would have them in the future. In 
other words, we attempted to identify 
the patient’s risk—an important con-
cern for physicians, who must often 
prescribe medications and implantable 
devices on the basis of the perceived 
risk of symptoms. (Symptoms in this 
context are events, such as syncope, 
that are triggered by prolonged QT.)

Identifying high-risk patients who 
need extra prescriptions or monitor-
ing or low-risk patients who would not 
benefit from those burdens would be 
highly valuable to both the physician 
and patient. Additionally, despite the 
limitations of this particular data-
base, this study laid the groundwork 
for a future study at a time when 
a dataset with clinical outcomes 
becomes available.

Data preprocessing
Figure 2 illustrates the steps that 
transform raw ECG data into clini-
cally useful measurements. Raw data 
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contains massive redundancies as 
well as ectopic heartbeats and obvi-
ous noise and errors, which will not be 
useful in later processing. Preprocess-
ing extracts only clinically relevant 
markers from the data, which reduces 
the data fed into the ML algorithm by 
multiple orders of magnitude while 
drastically improving classification 
accuracy and execution time. The 
delineated heart beat (Clinical markers 
box) highlights several important mea-
surements of the cardiac electrical 
cycle. Atrial and ventricular depolar-
ization and repolarization are repre-
sented on the ECG as a series of waves: 
the P wave followed by the QRS com-
plex and the T wave. The P wave occurs 
during atrial depolarization— when 
the atria contract. The QRS complex 
indicates ventricular depolarization— 
when the ventricles contract; at its 
end is the J point. The T wave occurs 
during ventricular repolarization—
when the ventricles relax. Durations, 
amplitudes, and shapes at various 
parts of the ECG can be used to diag-
nose myriad illnesses.

Algorithm training
To identify patients at risk for LQTS 
symptoms, we trained ML algorithms 
using input variables extracted from 
raw ECG data. As Figure 2 shows, 
useful intervals and amplitudes are 
available after only two preprocessing 
steps: delineation and the computa-
tion of clinical markers.

We first annotated important 
markers in the ECG recording (such as 
the P, Q, R, S, and T peaks, onsets, and 
offsets) using delineation software to 
identify these points.9,10

The relevance of each clinical 
marker depends on the disease being 
studied. For example, STe, the eleva-
tion (voltage) during the ST segment, 

is of interest in heart-attack cases, and 
the shape of the P wave is of interest to 
diagnosing atrial enlargement. Many 
diseases affect the QT interval and its 
subintervals (QRS, the J point to  T peak, 
and T peak to T end).

In our study, the QT and RR inter-
vals were the most relevant markers. 
The QT interval alone is not enough 
information, because it will naturally 
lengthen and shorten in all individ-
uals as their heart rate decreases or 
increases. The RR interval—the dura-
tion of a complete cardiac cycle— 
provides enough information to correct 
the QT for heart rate. We calculated 
the corrected QT (QTc) using the Frid-
ericia equation:11

=QTc
QT

RR

s
3

Reducing dimensionality
Preprocessing substantially reduces the 
data to be reviewed. The raw ECG data—
sampled at 200 Hz, 16 bits per sample, 
on 3 leads, and over 24 hours—needed 
100 Mbytes of storage. If only QTc inter-
val values are required to detect LQTS 
symptoms, the storage requirement 
lowers to 1 Mbyte. Storage capacity 
alone is not a sufficient reason to have 
preprocessing; additional storage space 
is relatively inexpensive. Rather, pre-
processing is necessary when using ML 
algorithms because the data reduction 
translates directly to a dimensionality 

reduction and faster processing in sub-
sequent steps.

Reduced dimensionality is import-
ant because the “curse of dimension-
ality” remains a difficult problem in 
categorizing big data. That is, large 
volumes of data have a daunting num-
ber of features, with each feature hav-
ing myriad possible values. There are 
so many dimensions to work with 
that it is too easy to separate the train-
ing data into the correct groups. The 
learned model becomes specific to the 
training set rather than generalizing 
to other data—a problem known as 
overfitting. Thus, an enormous amount 
of training data is required to ensure 
that there are several samples with 
each combination of values. With a 
fixed number of training samples, 
ML’s predictive power can decrease as 
dimensionality increases.

Method selection
Among the ML methods for classifica-
tion, supervised learning and cluster-
ing are the most popular. In our study, 
we focused on supervised learning. The 
alternative to supervised learning is 
clustering, also known as unsupervised 
learning, which generally tries to group 
data points into clusters according to 
their proximity to one another. A new 
data point can then be classified on the 
basis of the cluster into which it best fits.

Artificial neural networks, inspired 
by the neuron web in the human brain, 
can be used for both supervised and 
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FIGURE 2. Detailed preprocessing steps using the workflow from Figure 1. The raw ECG 
signal contains too much data to feed into most ML algorithms, and the data has massive 
redundancy across leads (sensor locations) and heartbeats, as well as noise and errors. 
Preprocessing filters the raw ECG waveforms to extract only relevant clinical markers, 
such as the durations of the QRS complex and P and T waves.
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unsupervised learning. Deep networks 
use many layers of artificial neurons 
to form input data abstractions, which 
lead to the formation of a final classi-
fication layer. In each layer, weights 
are applied to features of the previous 
layer to optimize performance.

The supervised learning methods 
that best fit our study were support vec-
tor machine (SVM), decision tree, and 
nearest neighbors. These algorithms 
classify previously unseen data points 
based on some function of the data 
points they have already seen. In an 
attempt to improve accuracy, some ML 
algorithms factor in the results of sev-
eral classifiers in order to make their 
decision. Random forest and AdaBoost 
are among the most popular methods to 
use this ensemble learning technique.

Table 1 lists the pros and cons of the 
four methods we considered in our 
evaluation: k-nearest neighbors, SVM, 
random forest, and AdaBoost. The 
table is useful in identifying the best 
classifier for a given problem and set of 
computational constraints.

k-nearest neighbors. The k-nearest 
neighbors algorithm finds the short-
est distance between a new testing 
point and adjacent training points. 
It then classifies the testing point as 
the most common class among its 
 k-nearest neighbors.

Support vector machine. The SVM 
method uses a training points subset 

to create hyperplanes that divide the 
data into classes, which it keeps as far 
apart as possible (thereby maximizing 
the distance between the hyperplane 
and different class samples). SVMs 
rely on a linear or nonlinear feature 
combination, depending on the kernel 
declared in the algorithm. We tested a 
linear kernel as well as a radial basis 
function (RBF) kernel.

Random forest. The random forest 
algorithm is an ensemble learning 
method that averages the results of 
several decision trees to classify its 
samples. As the name implies, each 
decision tree is trained on a random 
training data subset, perhaps using 
random features as well.

AdaBoost. AdaBoost, short for 
adaptive boosting, aggregates the 
results from many weak classifiers 
by iteratively retraining them to 
focus on fixing mistakes from the 
previous round. It then averages the 
results. In our experiments, Ada-
Boost always used decision trees as 
the weak classifier.

RUNNING THE CLASSIFIERS
We accessed a database containing 
24-hour ECG recordings of 480 LQTS 
patients, including demographic 
information such as gender, age, 
and specific LQTS genotype.12 We 
restricted our study to 434 recordings 
of patients with the most common 

LQTS genotypes (LQT1 and LQT2) and 
the most complete demographic infor-
mation (such as age and gender). The 
subjects’ average age was 25 ± 18 years 
(newborns to senior citizens); 55 per-
cent of the subjects were female, and 
67 percent had the LQT1 mutation. 
Our goal was to determine which of 
the patients would show symptoms 
of LQTS, such as seizures or syncope. 
That is, we were trying to identify 
ECG patterns that could reveal which 
genotype- positive patients will also 
be phenotype- positive. Given some 
measurements from an ECG, a classi-
fier should simply tell us “symptoms 
expected” or “no symptoms expected,” 
perhaps with a confidence value.

Algorithm implementation
We implemented all the classification 
algorithms—k-nearest neighbors, lin-
ear SVM and RBF SVM, random forest, 
and AdaBoost—using scikit-learn, an 
open source Python library built on 
SciPy and NumPy.4 To assess a clas-
sifier’s accuracy, we set aside 30 per-
cent of the samples for testing, and 
trained only on the remaining 70 per-
cent. Because some algorithms include 
inherent randomness in their opera-
tion and because the division between 
training and testing data is also ran-
dom, we repeated the cycle of selecting 
training data, training, and testing 50 
times for each classifier.

The average result from these 
trials— the Monte Carlo cross- validation 

TABLE 1. Pros and cons of four supervised learning classifiers.

Classifier Advantages Disadvantages

k-nearest neighbors Simple to implement 
Easy to understand and interpret

Sensitive to noisy data and anomalies 
Computationally expensive for large datasets

Support vector machine Flexible with nonlinear data 
Scales up with large sets of data 
Relatively resistant to the “curse of dimensionality”

Difficult to interpret feature importance 
Yields possibly unreliable confidence estimates

Random forest Alleviates overfitting problem 
Easy to extract feature importance 
Resilient to missing data 
Scales to large datasets

Increases bias relative to single decision tree 
Different results possible in retraining on same data

AdaBoost Automatically reduces dimensionality 
Relatively fast

Sensitive to noisy data and anomalies
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score—told us how well a classifier 
would likely perform. The worst result 
showed how low a classifier’s accuracy 
could be when the data was not evenly 
distributed across the random training/
testing split (based on its underlying 
properties). For example, if most of the 
outliers or noisy recordings end up in 
the test set, or almost all of the asymp-
tomatic patients end up in the training 
set, our trained model will not match 
up well with the data it’s tested against. 
For classifiers that require input data to 
be normalized, we used scikit-learn’s 
 StandardScaler() function.

Feature selection
The four ML methods we used have 
inherent strengths and weaknesses, 
but their performance was also con-
strained by the data we provided 
them. We knew that QTc, and there-
fore QT and RR, are the measurements 
that cardiologists use most often to 
determine whether a LQTS patient is 
in danger. We also knew that people 
with different LQT genotypes tend to 
show more QTc prolongation at dif-
ferent times of the day.13 We there-
fore decided to provide hourly QT and 
RR measurements as input to the ML 

classifiers. Each of our samples for 
training or classification consisted of 
48 values (24 for QT and 24 for RR); 
increasing that number risked inflict-
ing the curse of dimensionality.

To reduce dimensionality even 
more, we used chi-square (χ2) tests to 
automatically select features that were 
likely to be the most useful. In general, 
the fewer the dimensions in the input, 
the fewer training samples are needed 
to achieve good performance, and the 
faster classifiers will run. Feature 
selection methods are also useful in 
the discovery of previously unknown 
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FIGURE 3. Classifier performance in the study. The input features were hourly QT and RR measurements for one day. Each data point is 
an average of 50 trials for which we randomly selected different training and testing data. Approximately 52 percent of the patients did 
not have symptoms, so the thin dashed line in (a) average accuracy and (b) minimum accuracy represents the performance achievable 
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training dataset of 304 samples, and (d) classification time represents how long validation took for the full test set of 130 samples. 
AdaBoost always used decision trees as the weak classifier.
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patterns and correlations between 
variables. For example, the machine 
might find that patients with a very 
specific genetic mutation are more at 
risk than others with seemingly sim-
ilar mutations or that a measurement 
that is typically not used in the clinic 
actually carries significant informa-
tion. Even if no new relationships are 
discovered, feature selection is use-
ful to confirm the chosen model—to 
see if the machine picks the features 
expected.

RESULTS
We used the four classifiers to deter-
mine if the genotype-positive LQTS 
patients in our database had suffered 
or would suffer from any symptoms. 
Figure 3 illustrates how the perfor-
mance of each classifier changes as 
we provided more training samples. 
We configured the k-nearest neigh-

bors classifier to weight samples by 
distance rather than uniformly and 
composed the random forest with 100 
trees rather than the default of 10. We 
set both random forest and the two 
SVMs to use balanced class weights. 
All other parameters were the scikit-
learn defaults. Each of the classifiers’ 
input samples contained 48 values.

We computed runtime results on 
an Intel i7-5930K and always used 
30 percent of the 434 samples in the 
full dataset (training plus testing) for 

testing. However, we conducted train-
ing over increasingly larger subsets of 
the remaining 70 percent to determine 
how many samples would produce 
optimal results.

Average and minimum accuracy
Figure 3a shows average accuracy—
the accuracies that we could expect 
from each classifier on the basis of 
50 random training-data selections. 
Figure 3b shows minimum accuracy 
over the 50 trials—assuming we chose 
training data poorly, how well could 
each algorithm do? We found that in 
this worst-case scenario, more than 
100 training samples could be required 
simply to break even—to exceed 52 
percent (the guessing line). The high-
est scores, both minimum and aver-
age, came from random forest and the 
RBF SVM, which achieved 60 to 65 per-
cent accuracy even with a poor selec-

tion of data and fewer than 100 train-
ing samples. The best classifier in our 
tests, the RBF SVM, averaged about 70 
percent accuracy.

Obviously, it is not desirable for the 
machine to make bad classifications. 
However, relatively low accuracy is 
manageable if we know when the 
computer was unsure of a result. We 
therefore tested the machine’s aver-
age confidence in its responses. When 
the computer was incorrect, its aver-
age confidence was around 64 to 69 

percent with the best classifiers, RBF 
SVM and random forest. When the 
computer was correct, its confidence 
was higher—around 68 to 74 percent. 
This test showed us the possibility of 
setting a threshold, below which the 
decision-support system could report 
“inconclusive” rather than marking a 
patient as having a high or low risk.

Scalability
Figures 3c and 3d show the results of 
measuring the runtime of the train-
ing and classification stages, which 
we used to estimate each classifier’s 
scalability. Runtime was not a prob-
lem with this particular dataset, but 
it could be a limitation in other stud-
ies. Although the ensemble classi-
fiers (AdaBoost and random forest) 
took longer than the others in both 
stages, adding training samples 
barely affected their runtimes. As we 
expected,  k-nearest neighbors had 
essentially zero training time, but 
classification time increased with 
the number of samples because the 
algorithm had to compute distances 
to every point in the training set. In 
fact, at around 240 training samples, 
classification actually became slower 
than with AdaBoost. Because the two 
ensemble methods have very flat run-
times, SVM will also become slower 
than even random forest, given 
enough training samples.

All the classifiers except k-nearest 
neighbors (which does not really have 
a training stage) could not incorpo-
rate new data after training was com-
plete. When a database grows, classi-
fiers must be entirely retrained or the 
process of adding samples must use 
nontrivial techniques. The ability to 
add one or more training examples 
to a model without complete retrain-
ing, referred to as online ML, is an 

IN FEATURE SELECTION, OUR AIM   
WAS TO REDUCE INPUT DIMENSIONALITY 

WHILE MINIMIZING RELEVANT 
INFORMATION LOSS.
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important scalability feature. Con-
sequently, we tested the perceptron 
online algorithm14 and found that it 
achieved 68 percent accuracy, a level 
comparable to that of random forest.

Effects of feature reduction
We next investigated the impact of 
providing classifiers with QTc alone 
instead of QT and RR separately, which 
reduced the number of features from 
48 to 24. Because QTc is designed to 
contain the LQTS-relevant informa-
tion from QT and RR, we expected to 
see improved runtimes without lower 
accuracy. However, we found that 
accuracy decreased for random forest 
and AdaBoost (both of which are based 
on decision trees) as did the learning 
rate (more samples were required to 
reach peak performance). The feature 
reduction did not hurt RBF SVM’s per-
formance, which consistently yielded 
70 percent accuracy when provided 
with enough training samples.

AdaBoost and random forest saw no 
improvement in runtime with fewer 
features. Predictably, k-nearest neigh-
bors’ classifications were faster, and 
all SVM runtimes improved. Because 
of these results, we revisited our fea-
ture choice, attempting to narrow the 
list as much as possible.

Searching for better features
Our use of QT, RR, and QTc was based 
on knowing what physicians mea-
sure in practice. However, we wanted 
to be sure that we did not overlook 
any other useful cardiac features, so 
we decided to evaluate 23 features at 
every hour of the day—a total of 552 
measurements that included QT, RR, 
QRS, ST segment duration and ele-
vation, QTp, JT, JTp, TpTe, and T-wave 
duration and amplitude. Addition-
ally, we used several features from 

each patient’s EHR: gender, age, LQT 
type (1 or 2), mutation type, and muta-
tion location.

Because we had only 434 training 
samples, we expected to have to reduce 
the new feature set’s dimensional-
ity to mitigate overfitting. Our aim 
was to reduce input dimensionality 
while minimizing information loss, 
which both the principal component 
analysis (PCA) and the χ2 method sat-
isfy. PCA projects the data to a lower 
dimensional space, while χ2 selects 
the statistically best features. We mea-
sured classifier accuracy varying the 
number of preserved features from 
1 to 512. Surprisingly, both feature 
selection methods allowed the clas-
sifiers to achieve 70 percent accuracy 
with only one feature or attribute. 
The most important features seemed 
to be QT-like measurements taken in 
the evening, where “QT-like” means 
QT, JT, QTp, JTp, or versions of these 
corrected for heart rate. Using the top 
20 features with the random forest 
classifier yielded 72 percent accuracy 
(69 percent sensitivity and 75 percent 
specificity).

Figure 4 is a histogram of the 
times of day in which the top 25 and 
top 100 features appeared. As the fig-
ure shows, all the top 25 features are 
evident around 5 pm to 6 pm, which 
implies that perhaps fatigue at the end 
of the workday is unmasking cardiac 
issues. Expanding the search to the 
top 100 features begins to reveal other 
important times. One is first thing 
in the morning (6 am to 7 am), which 
is another stressful time of day.15 
Another is late night (1 am to 2 am), 
which makes sense for the LQT2 sub-
set of patients who tend to show more 
QTc prolongation during sleep.13 Also 
important is the lack of highly ranked 
features around 8 am to 11 am, which 
implies that a clinical checkup in the 
morning might not be sufficient for 
the physician to accurately assess a 
patient’s risk.

STUDY IMPLICATIONS
Our study had several implications 
for future analyses, including the 
effects of beta blockers, gender influ-
ence on classification, and measure-
ment type.
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FIGURE 4. Feature importance versus time of day. Starting at 0, which represents mid-
night, the peaks indicate that late night, awakening, and the end of the workday are the 
best times to detect cardiac issues for this patient group.
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Beta blocker effects
In one of our experiments, we found 
that separating QTc into QT and RR 
improved accuracy. However, many 
high-risk LQTS patients are on beta 
blockers—drugs prescribed to slow 
the heart rate—so it was possible that 
classifiers in that experiment were 
actually reacting to the increased RR 

that is characteristic of beta blockers, 
not to any novel pattern we had hoped 
to find. In particular, beta blockers 
might explain why the classifiers 
based on decision trees (AdaBoost 
and random forest) had higher accu-
racy when heart rate was available. To 
determine if this was the case, we con-
ducted three evaluations.

The first was to train the clas-
sifiers on only beta blockers (BBs) 
or non-BB patients and then check 
accuracy. When the classifiers were 
trained on only BB patients, overall 
accuracy remained at approximately 
70 percent. Accuracy within the BB 
group increased to approximately 
90 percent, but accuracy in the 
non-BB group fell to approximately 
60 percent. When we trained the 
classifier on only the non-BB group, 
we observed the opposite results. 
Although 90 percent accuracy is a 
marked improvement, the “guessing” 
line is higher in these subgroups: 
67 percent of non-BB patients had 
no symptoms, and 62 percent of BB 

patients had symptoms. When com-
bined, the line was 52 percent.

Our second experiment was to train 
the classifier on both groups as before, 
but to test the accuracy against each 
group separately. Results showed little 
difference: classification of only BB or 
only non-BB patients remained at 66 to 
68 percent accuracy.

Finally, in our experiment that used 
only QTc as input, we were not (ide-
ally) providing any heart-rate infor-
mation to the classifier. The classifier 
needed more training samples to reach 
peak accuracy, but that peak was still 
around 70 percent.

We concluded that the presence of 
BBs does not affect overall accuracy, 
but classifiers are more accurate when 
the groups are separated.

Gender
We expected gender to be a feature of 
significant importance in ML classifi-
cation, as gender differences are known 
to influence many coronary heart dis-
eases,16 and males and females have 
distinct average QTc values and clini-
cal prolongation thresholds. However, 
feature selection eliminated gender 
(along with age and mutation infor-
mation) as very insignificant relative 
to most ECG measurements. We con-
firmed this by running RBF SVM and 
random forest with gender as an input, 
and found no difference in results and 

virtually no weight placed on that fea-
ture. It will be interesting to see under 
what conditions gender or the other 
static inputs become significant.

Measurement type
For our study, the feature of interest 
(QTc) has characteristics that fit well 
with hourly average measurements 
because QTC changes slowly and is 
corrected for heart rate. However, for 
other applications, even the exten-
sive feature set we tested might not be 
enough. Heart rate, for example, can 
vary greatly during one hour. Perhaps 
a different measure such as heart rate 
variability would be more suitable. 
Future analyses might even include 
more exotic measurements, such as 
“ST elevation at 60 ms after J point 
during high heart rate” or “percentage 
of beats that T wave is inverted.”

We have presented a workflow 
and a conceptual ML-based 
system for health monitor-

ing  that aims to analyze the ECGs of 
patients with an LQTS genetic disorder 
and to identify patients with increased 
risk of adverse cardiac events. The 
envisioned system will provide a per-
sonalized assessment of each patient 
by considering a combination of criti-
cal markers.

The results in Figure 3 provide 
insights into which classifier works 
best under constraints such as avail-
able training data or computational 
power. RBF SVM or random forest 
will yield the highest accuracy. RBF 
SVM is probably the better choice 
for experiments with relatively few 
training samples, but random for-
est’s faster runtime will be prefer-
able when training data grows to 
thousands of samples. As runtime 

THE ML SYSTEM WE ENVISION WILL 
PROVIDE A PERSONALIZED ASSESSMENT 

OF EACH PATIENT BASED ON A 
COMBINATION OF CRITICAL MARKERS. 
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becomes more of a concern, feature 
selection gets more important.

In Figure 3a, all classifiers seem 
to be close to reaching a horizontal 
asymptote, meaning that their perfor-
mance will not improve simply by add-
ing more training samples. Instead, 
their inputs and parameters will need 
to be optimized. In previous work, we 
found that time of day was important 
in classifying patients as having the 
LQT1 or LQT2 genotype.13,17 Both types 
show QT prolongation, but during dif-
ferent activities and different times of 
day. This finding is in large part why 
we structured our inputs as hourly 
data points in the study described. The 
dimensions also reduce well in this 
structure, as usually only a few hours 
during sleep are enough to differenti-
ate LQTS types. However, other input 
structures and measurements should 
be investigated. In the selection of 
appropriate input features, the physi-
cian’s knowledge and intuition remain 
critical.

The annotation algorithm we used 
had some trouble with noisy or abnor-
mal ECGs; improved accuracy might 
require cleaner inputs and more accu-
rate annotations. Additionally, we 
could construct more complex fea-
tures such as T-wave symmetry mea-
surements. Another possible approach 
is the use of a voting classifier, which 
attempts to aggregate the predictions 
of several other classifiers to reach a 
better result. However, our experi-
ence suggests that a voting classifier 
will be only slightly more accurate 
than the best individual classifier. 
Finally, a complete set of experiments 
will require trying other classification 
methods such as clustering and artifi-
cial neural networks.

The steps we used can be general-
ized to other types of medical data and 

illnesses. We expect that the refine-
ment of our method and the growth 
of EHR databases will greatly improve 
the quality of care for patients with a 
variety of disorders. 
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